
Hunting for problems with Artemis

Gabriela F. Creţu-Ciocârlie, Mihai Budiu and Moises Goldszmidt

gcretu@cs.columbia.edu, {mbudiu,moises}@microsoft.com

Microsoft Research, Silicon Valley

Abstract
Artemis is a modular application designed for analyzing

and troubleshooting the performance of large clusters

running datacenter services. Artemis is composed of four

modules: (1) distributed log collection and data extraction,

(2) a database storing the extracted data, (3) an interactive

visualization tool for exploring the data, and (4) a plug-in

interface (and a set of sample plug-ins) allowing users to

implement data analysis tools including (a) the extraction

and construction of new features from the basic

measurements collected, and (b) the implementation and

invocation of statistical and machine learning algorithms

and tools. In this paper we describe each of these

components and then we illustrate the power of the plug-in

architecture by presenting a case-study using Artemis to

analyze a Dryad application running on a 240-machine

cluster.

1. Introduction
The computer industry is in the midst of a new

revolution: the emergence of cloud computing. Many

players in the industry are building cloud-based

services using large clusters of commodity PCs.

Key to the effectiveness of cluster computing is

reduced resource management cost. However,

writing distributed software systems for large

clusters, debugging, optimizing performance,

monitoring, repairing, provisioning, and upgrading

are difficult tasks. One of the main tools used by

software developers for cluster services is abundant

logging information. Since the use of debuggers on

live server-side systems is most often impossible,

logging is the tool of choice for understanding large-

scale system behavior. Thus even live deployed

systems contain copious amounts of logging.

As a consequence, an important part of meeting the

performance and dependability goals of clusters is the

management and analysis of distributed logs.

Understanding performance frequently requires the

aggregation of log information across the machines in

the cluster. Debugging correctness problems requires

the correlation of log information, to infer system

interactions. Automated analysis using statistical

machine learning algorithms requires performing

tasks such as feature extraction and visualization.

In this paper we describe Artemis, an application for

the analysis of large-scale distributed logs, that

incorporates all the elements mentioned above.

Artemis has been designed to be modular, separating

data collection from data analysis, and separating

application-specific parts
1
 from generic application-

independent parts. We show how the flexibility of

Artemis allows us to customize it for the domain of

distributed Dryad applications (Dryad is described

briefly in Section 3). In Section 5 we use this

customized instance of Artemis for debugging a

Dryad application running on a 240-machine cluster.

We have also used Artemis to explore datasets

produced by other distributed applications, such as

telemetry performance data for the Windows

operating system and performance measurements

from a data center providing enterprise services.

As an application focused on the analysis of

distributed logs, Artemis presents the following

unique combination of characteristics:

 Artemis integrates in a single tool all the important

tasks required for log analysis: collection, storage,

visualization, analysis; it is designed to be a one-

stop shop for the programmer attempting to

understand the performance of a distributed

application. The system architecture integrating all

of these pieces is the subject of Section 4.

 Artemis is modular and extensible in several

dimensions:

- Artemis can manipulate multiple data sources and

data types. Our current data sources include log

(text) files, performance counters data (stored in

comma-separated files with headers), XML data

sources, and binary (encoded) dumps from a

variety of sources (application and system-level).

We discuss data collection in Section 4.1.

- Artemis performs both generic and user-defined

data analyses. A plug-in mechanism allows the

data analyst to write (or invoke) additional

domain-specific analyses. In this paper we

include a description of several plug-ins we wrote

for the analysis of Dryad jobs: “machine usage”,

“job critical path”, and “network utilization”.

 Artemis is built around a Graphical User Interface

(GUI), keeping the human in the data analysis loop.

The GUI, described in Section 4.3 enables the

analyst to quickly navigate data visualizing

correlations and trends, and also to define

interactively the features used for more

1
“Application-specific” parts depend on the specific

distributed application that we are trying to analyze.

sophisticated machine-learning data analyses. The

visualization tool provides two basic primitives:

histograms and time series.

2. Related work
There is a lot of prior work in (distributed) log

collection, log visualization and log data analysis. We

believe that Artemis is unique in integrating all these

activities into a single tool in a generic (application-

independent) and extensible architecture. We

enumerate here only papers related to distributed log

analysis and highlight the differences with Artemis.

Pablo [10] is an early system with many similar

goals, but a very different realization.

LogSurfer and LoGS [8,9] focus on closing the feed-

back loop, using on-line corrective actions when

faults are detected in the system.

NetLogger [2] combines data from network, host and

application events. It contains four components: an

API for generating application-level events, a set of

tools for collecting and sorting log, a set of host and

network monitoring tools and a front-end

visualization tool. It requires the analyzed application

to use the special logging libraries.

A lot of research has been dedicated to datamining

distributed systems logs (MapReduce, Hadoop,

and grid computing systems). Recent examples

include [5,6,12,14]. The work in [5,14,12] focuses

on taking advantage of syntactic features in the

logs. The work in [6] is built around machine

learning techniques for performance debugging,

yet it is not integrated with visualization, feature

extraction, and it is not easily extendable (with

new algorithms) as Artemis is.

3. Dryad system architecture
As discussed in the introduction, while Artemis can

then be used for analyzing the performance of

various distributed computing applications, in this

paper we focus on the use of Artemis for analyzing

Dryad-based distributed applications
2
. Dryad [3] is

middleware for building data-parallel distributed

batch applications. The structure of a Dryad

application (called a Dryad job) is depicted in Figure

1. A job is composed from a set of stages; each stage

is composed of an arbitrary number of replicas of a

vertex (each operating on a different data partition).

The edges of the graph are point-to-point

2
 From Wikipedia: Dryads are tree nymphs in Greek

mythology. They are normally considered to be very shy

creatures, except around the goddess Artemis, who was

known to be a friend to most nymphs. Artemis is also the

Hellenic goddess of the hunt.

communication channels. The job graph is required

to be acyclic. Communication channels are finite

sequences of arbitrary data items. In general each

vertex corresponds to a single process, but several

vertices connected with shared-memory channels can

be run as separate threads in the same process.

Figure 1: structure of a Dryad job.

This model is simple and powerful. Despite the fact

that the Dryad runtime is unaware of the semantics of

the vertices (i.e., the vertices can run arbitrary

binaries), the Dryad runtime can provide a great deal

of functionality: generating the job graph, scheduling

the processes on the available machines, handling

transient failures in the cluster, collecting

performance metrics, visualizing the job, invoking

user-defined policies and dynamically updating the

job graph in response to these policy decisions.

Figure 2: Dryad system architecture.

Figure 2 shows schematically how Dryad is

implemented. Each Dryad job is supervised by a

centralized job manager process. The job manager

uses a small set of cluster services to control the

execution of the vertices on the cluster. The minimal

set of services required for Dryad’s operation include

a name service and a remote execution service. All

these components (JM, services, vertices) produce

logging information.

4. The Artemis log analysis toolkit
Figure 3 shows the structure of the Artemis

distributed log-analysis toolkit. Artemis attempts to

cleanly separate the application-specific parts from

the application-independent parts. Artemis can be

adapted for analyzing a new distributed application

by replacing or modifying the application-specific

parts.

Figure 3: Artemis architecture. The application-

specific parts have been highlighted.

The four main components of Artemis are:

1. Log collection, persistence, filtering and

summarization. These are application-specific; their

role is to collect log data about the application and to

translate it to a uniform format.

2. Data storage. The collected data is stored using a

generic database. Only the schema is application

specific.

3. Data visualization. Interaction with the data is

done by using an entirely generic GUI, which can

display histograms and time series data. The GUI is

coupled to the database using a pair of (application-

specific) views: one providing data for the histograms

and the other providing data for the time-series.

4. Data analysis is implemented using a plug-in

architecture. A plug-in is an object implementing a

specified .Net interface; the inputs and outputs of

plug-ins are views of the database. Some plug-ins are

generic (e.g., computing the area under a curve),

while other are application-specific (e.g., computing

the critical path of a Dryad job). The data generated

by running a plug-in is merged back into the

database, and thus can be visualized with the GUI or

used by other plug-ins.

We proceed to describe each of these components.

4.1. Log collection and filtering
The data-collection front-end for analyzing Dryad

jobs aggregates data from the following sources: (a)

the job manager logs, (b) the logs of the vertices,

generated by the Dryad runtime library (linked to

each vertex), (c) logs from the remote execution

cluster services, which fork vertices and collect

statistics about them, (d) performance counters from

the Windows performance monitoring service

(Perfmon) and (e) logs from the cluster name server

describing the cluster network topology. Some of

these logs are text files (a, b, d above), while other

are XML (e) or binary-encoded (c). It is

straightforward to add additional sources of

information; for example, we plan to add SNMP logs

from cluster routers.

A single Dryad job composed of tens of thousands of

processes and running on a large cluster for tens of

minutes can emit in excess of 1TB of logs. Each

Dryad vertex process runs in a sandbox, having a

private home directory where the vertex maintains its

working space, and where the vertex dumps logs.

Each vertex produces around 1 MB/s/process.

Following the completion of a Dryad job, the cluster-

level job scheduler garbage-collects the sandboxes of

the job vertices after a configurable time interval.

We have built an additional application-specific GUI

front-end for interfacing Artemis with the Dryad

cluster scheduler. This GUI enables the data analyst

to browse the jobs residing on the cluster and to

choose which ones to copy and analyze. Artemis first

parses the job manager logs which contain global

per-job information, including pointers to the location

of all the vertex logs. This information is used to

prepare the input for a distributed DryadLINQ [15]

computation, which locates, copies, reads, parses, and

summarizes all the distributed data sources which

reside on the machines in the cluster
3
.

Using DryadLINQ enables the Artemis data

collection to take advantage of the parallelism

available in the very cluster under study for the data-

intensive parts of the analysis. The DryadLINQ

computation spawns a vertex on each machine which

contains interesting logs. On our 240-machine

cluster filtering several hundred gigabytes of log data

requires just a couple of minutes of wall-clock time.

The cluster services and the performance counter

collection tasks are running and logging continuously

on each machine in the cluster; in contrast, a Dryad

vertex uses a machine for a bounded time. The

Artemis log collector extracts only the relevant

portions of the service logs for each machine. Data

extraction involves, in essence, performing a giant

distributed join.

The information extracted from vertex logs includes

the I/O rate for each Dryad channel. The performance

counters include over 80 entries describing global

(per-machine) and local (per-process) measurements

(e.g., virtual memory usage, I/O rate, garbage

collections, processor utilization, etc). The counters

include information about the .NET runtime. The

remote execution daemons provide statistics about all

the Dryad channels.

3 If some of the cluster machines are unavailable, the data

collection will still succeed, but produce incomplete data.

4.2. Data storage
The filtered data from all these sources is extracted

and aggregated in a database accessible from the

local workstation. In principle any relational engine

could be used, and we plan to use a commercial

database in the future.

The most important part of the database is the data

schema. The schema is generated by the data

collection process. The schema can categorize each

table column as one of: numerical data (e.g., CPU

utilization), category (e.g., machine name), string

(e.g., channel URI), or timestamp or time offset (e.g.,

time when record was collected). This approach is

similar the one used by the Polaris [13] data

visualization tool.

4.3. Data visualization and exploration
The data visualization part of Artemis is completely

generic (i.e., it is not tied to the application), and is

not tied to the data semantics (the only data semantics

is conveyed by the schema). We have focused on

displaying two types of magnitudes:

 Scalar-valued measurements, which can be of type

either numeric or category (e.g., starting time, total

I/O, machine where a vertex has run, number of

garbage collections);

 Time series data (e.g., I/O in each 2 second interval,

CPU utilization in each interval, etc). By

definition, a time-series is composed of data items

tagged with timestamps.

In order to interface the database with the

visualization a domain expert must create two

application-specific database views. The first view is

a relation containing all database columns that

contain scalar data; the “primary key” of this table is

the main entity which is analyzed (in our case study

the key is the ID of a Dryad job process).

The second view is a relation that must contain at

least two columns: one column is a foreign key

pointing to the primary key of the first view; the

second column is a timestamp (absolute or relative).

The other columns of this view contain time-series

data. In our case, all performance data collected by

Perfmon maps directly into this view.

The data from the first view (scalar data) is browsed

and displayed using histograms and distributions

(shown in Figure 4); and the data from the second

view is displayed with line-plots (shown in Figure 6).

The user can choose using drop-down boxes the

metrics to display (in essence performing a relational

algebra projection of the view on a selected column),

and the number of buckets of the histogram. In

Figure 4 the user has displayed the running time of

the Dryad job processes in a particular stage, and she

has used a histogram with 10 buckets; only the first 4

and the last buckets contain any elements. Once a

histogram has been displayed, each primary key

value is associated with a color (the color of the

bucket of the histogram). For example, the leftmost

(fastest) 45 processes become red, and the next 157

processes become orange, while the lone outlier at

the right is magenta.

Figure 4: Displaying a set of scalar values using a

histogram. The horizontal axis is the value being

histogramed, in this case running time.

The GUI preserves these colors across different

displays; Figures 5, 6, 10 and 11 use the same color

assignment. For example, in Figure 5 we display the

distribution and histogram of another scalar value,

the peak number of page faults (measured across 15-

second intervals). For each process the same color as

in Figure 4 is used. This makes it easy for the user to

identify for example, whether misbehaved instances

are also outliers with respect to other metrics. In

Figure 5 below we note that the outlier from Figure 4

continues to be an outlier with respect to the “peak

number of page faults”. Each histogram bucket can

be “selected” with a checkbox; only the data from the

selected buckets is used in further analyses (in

essence performing a relational algebra select

operation visually).

Figure 5: Peak number of page faults; this histogram

uses the same color coding as in Figure 4.

The second type of data that can be visualized is the

time-series. Time series are drawn with lines using

the colors inherited from a histogram (using the

foreign key). For example, in Figure 6 we display the

“disk read rate” (number of bytes read from disk in

each 15-second interval) for 3 selected buckets: red,

green and magenta. We can see that with respect to

this metric the magenta process is not an outlier,

since its line is right in the middle of the pack.

Multiple time series can be aligned (to start all at the

same time) or unaligned (they are displayed in

absolute time). Figure 6 is an aligned view, while

Figure 8 is unaligned.

Figure 6: Time series of the disk I/O rate for selected

processes. The horizontal axis is always time when

displaying a time-series, while the vertical axis is the

magnitude being plotted (disk rate).

The displays allow the user to click on points or

buckets or to use a rubber-band to select data. The

GUI identifies the selected data using a tabular

display shown in Figure 7. The tabular display can

be used to make further projections and selections,

and to export data directly to Excel. For example,

using the tabular display we can find out which one is

the outlier process from Figure 4.

Figure 7: Data from plots displayed in a tabular view.

We can interpret the data displayed by a GUI window

as (yet another) relational view of the data (obtained

from the projection of the input view on selected

columns followed by selection of the chosen

buckets). This is important because the displayed

data can be fed to plug-ins for further analysis.

4.4. Plug-ins and statistical analyses
Each GUI window contains a “Run plug-ins” button

which can be used to invoke computations on the

current data view.

Data analysis in Artemis is performed with plug-ins.

The plug-ins are used for (1) computing meaningful

features from the data, for driving the statistical

analyses; (2) for invoking statistical analysis and

machine learning packages, and (3) for performing

application-specific data analyses, including running

“scripts” invoking other plug-ins. We give examples

of each of these analyses for the case of Dryad jobs.

4.4.1 Feature computation

We provide a library of generic plug-ins for

computing simple data transformations which can be

composed to compute new metrics from existing

data. For time-series data we have min, max, range,

average, integral, derivative, anti-derivative, and

variance plug-ins. Some of these plug-ins generate

new time-series (e.g., derivative), while other

generate scalar data (e.g., average). Since the GUI

has no knowledge of data semantics, the data analyst

has to use application-specific knowledge to decide

which of these transformations are meaningful (e.g.,

you can integrate CPU time to obtain work, but you

cannot integrate the machine-usage time-series

described in Section 4.4.3.)

The plug-ins can be invoked either interactively from

the GUI or as batch computations from other plug-

ins. The data computed by the plug-ins is merged into

the database for immediate visualization or further

analyses.

4.4.2. Statistical analyses and machine learning

When analyzing Dryad jobs we combine the scalar

metrics extracted from the logs with the computed

features to generate new features for each Dryad

process; these features can be used by the statistical

machine learning plug-ins. We chose not to prune the

collected metrics, but instead we use automated

statistical approaches [1] to decide which features are

important.

Currently we have implemented plug-ins interfacing

Artemis with two off-the-shelf statistics packages

(developed at Microsoft): data clustering and

statistical pattern classification and feature selection.

The plug-ins write data to files as expected by each

analysis package and then invoke external processes

to perform the analysis. One such plug-in is written

in roughly 100 lines of code, so we expect it would

be easy to interface Artemis with other statistics

packages.

The clustering analysis attempts to uncover

differences in performance among the analyzed

entities (e.g., Dryad processes) and to determine

which of the available features correlate with those

differences. When applied in the context of Dryad,

this analysis relies on the assumption that all vertices

in a stage exhibit similar behavior. The differences

between vertices in a stage provide evidence for

either: a) faulty hardware, b) bad data distribution, c)

uneven data sizes, and d) interference with other

processes running on the same machine. The

clustering analysis uses a standard k-means algorithm

with automated model selection (the number of

clusters
4
). The model selection is done by evaluating

the change in distortion when increasing the number

of clusters. The clustering algorithm groups vertices

according to their similarity in performance while

pointing to outliers.

The pattern classification analysis is directed at

explaining differences in the performance of the

vertices belonging to different clusters. The analysis

automatically induces a model that discriminates

between the vertices according to their cluster. The

analysis uses logistic regression with L1-

regularization [4]. This is an effective method for

feature selection in classification, especially when the

number of features is comparable to the number of

samples [4]. We rely on a tool called HiLighter [1]

which was designed for diagnosing performance

problems in systems ranging from enterprise cloud

computing to test-bed software debugging.

4.4.3. Application-specific data analyses

The most powerful kinds of Artemis plug-ins have

access to the entire measurement database. These

plug-ins can implement complex data analyses by

joining information from multiple tables in an

application-specific way. We give three examples of

plug-ins we have developed specifically for

analyzing Dryad jobs.

a) Machine usage. This plug-in computes machine

usage for an entire job and represents it using time-

series data, enabling visualization with the existing

GUI. For each process it creates a time series with

four points, corresponding to the essential state-

transitions of the process: “ready to run”, “scheduled

to run”, “starts running”, “terminated”. The x axis is

time, while the y axis is the home machine of each

process. Figure 8 shows the machine usage for the

4
 In this context “cluster” refers to a data cluster – a

grouping of data according to a clustering algorithm.

distributed sorting application that we discuss in

Section 5.

Figure 8: Machine usage data displayed as a time-series.

The machine usage plug-in enables the fast visual

identification of which stages carry the weight of the

computation (i.e. take the longest time to finish),

which are the longer running vertices, and where are

the scheduling bottlenecks. The execution shown in

Figure 8 has poor cluster utilization due to some late-

scheduled vertices (all stages in this application are

blocking, requiring the previous stage to complete

before starting).

b) Critical path. The critical path shows the longest

chain of dependent processes in a Dryad job graph

execution. When overlaid with the machine usage

plot, the critical path shows where the bottleneck of a

particular computation is.

c) Network utilization. This plug-in combines

several database tables to compute the network traffic

distribution. It uses the cluster topology database

(describing machine assignment to racks) and the

description of all job channels (input URI, destination

process, machine mapping of processes) to determine

how the job data traffic is distributed on the network.

5. Usage scenario
We have used Artemis to diagnose problems for

several DryadLINQ computations running in a

research cluster comprising 240 machines. The

machines are all running Dryad; they all have 4 CPU

cores, 4 striped disks and 16 GB of memory. In this

section we choose a representative Dryad application,

written in DryadLINQ: distributed sorting. The

DryadLINQ compiler generates a plan comprised of

4 stages, shown in Figure 9. The input is stored in a

1Tb file partitioned into 240 pieces.

The first stage of the application reads the whole file

in parallel using 240 vertices and samples uniformly

from the input. The second stage aggregates the

samples and computes the distribution of the sampled

input. It also computes the boundaries of 240 equal-

sized buckets which will be used to redistribute the

input. The third stage reads the whole input again

and performs a hash-distribution using the buckets

computed by stage 2. Finally, each vertex in the

fourth stage performs an in-memory multi-threaded

sort and writes the output to its local disk.

Figure 9: Distributed sorting: an application analyzed

using Artemis.

The machine usage during one execution of this

application is in Figure 8. Stage 2 (histogram) is

extremely fast and barely visible. All the other

figures in this paper show just data related to the

sorting stage
5
.

In Figure 8 we notice two anomalies in the sorting

stage: one vertex starts much later than the other

ones, and the running time of one vertex is much

longer. The late vertex is due to scheduling conflicts

on the cluster: this vertex and another one have been

run sequentially on the same machine. This

information tells us that even in the absence of the

long-running outlier this stage would have taken a

long time to complete.

Figure 10: CPU utilization time series for selected

vertices in the sorting stage.

Now we focus our attention on the magenta outlier

from Figure 4, which is the long-running vertex in

Figure 8. In Figure 10 we display the CPU time; we

notice immediately that the outlier has much lower

average CPU utilization. Integrating the CPU

5
 In order to process just the sorting stage we first use a

histogram of stages (one bucket per stage – projecting the

view on stage), and then we select just the sorting stage

(selecting the suitable checkbox).

utilization (using the integration plug-in) we discover

that the total amount of CPU used (work) is about the

same for the outlier (not shown).

We then attempt to diagnose the problem by looking

at the I/O rate time series, shown in Figure 11. The

magenta vertex immediately stands out, since it has a

much lower I/O read rate than any other vertex in the

stage. Figure 6 shows that its disk I/O rate is not

abnormal. But focusing on the network I/O (not

shown here) we discover that the vertex is indeed

reading much slower over the network compared to

all its neighbors. After identifying the machine

which ran this vertex we confirmed with the cluster

administrator (after running some tests) that the

network card on this machine was broken (the same

machine is not a problem in the other stages of the

sorting job, since they are not network-intensive).

Figure 11: I/O Read bytes/second time series.

Having diagnosed the outlier, we try to understand

what influences the running time in the sorting stage

and what explains the difference between the

“normal” sorting vertices (red and green vertices in

Figure 4). We invoke the HiLighter plug-in, which

runs the logistic regression to find a subset of features

that predict the running time distribution (i.e., which

vertices are “red” and which ones are “green”).

HiLighter determines that four features related to

memory management and garbage-collection predict

with 92% accuracy the vertex placement in a buckets.

(We confirmed this diagnosis by performing least

square fitting (linear regression) with L1 to predict

computation time). These four features together with

one of the synthesized features -- time to reach peak

CPU utilization -- predict within 5% the response

time of the computation of every vertex, except for 3

outliers (out of 240 vertices). In summary, the

statistical analysis indicates a strong correlation

between the running time in the sorting stage and

various metrics related to data size (number of

garbage collection cycles, number of page faults,

input size). We did not expect the input size to these

vertices to have a large variance, since the data is

partitioned automatically in the second job stage by

the distributed sorting algorithm exactly with the

purpose of load-balancing the work. By plotting the

histogram of input size distribution we note that

there’s a spread of 10% between the lowest and the

highest input size. Since sorting is an n×log(n)

algorithm, this input size difference causes a

significant difference in running time. This suggests

that the sampling rate of the vertices in the first

computation stage in Figure 9 is too low to produce a

balanced partitioning.

6. Conclusions
Artemis is appropriate (a) for executing long term

studies of statistical properties of a large system, such

as the ones in [7,11] and also (b) as a tool for

diagnosing the performance of single run of an

algorithm on a large cluster of computers. Our

example in this paper illustrated its benefits in the

second context.

In designing and deploying Artemis we have focused

on building an extensible tool which addresses the

end-to-end process of distributed log analysis,

including: (a) collecting, persisting, and cleaning the

raw logs; (b) computing, correlating, preprocessing

and extracting features; and (c) visualizing and

analyzing the data. We have relied on techniques

from distributed computing, databases, visualization

and statistical analysis, and machine learning.

The end-goal of this research is to provide to the end-

user automatic application-specific diagnosis of

performance problems. At this point Artemis handles

raw data management, feature extraction and data

summarization, and statistical analyses. We are

currently focusing our efforts towards designing and

building diagnosis plug-ins layered on the existing

foundation.

Bibliography

[1] Peter Bodik, Moises Goldszmidt, and Armando Fox.

HiLighter: Automatically building robust signatures of

performance behavior for small- and large-scale systems. In

Workshop on Tackling Computer Problems with Machine

Learning Techniques (SysML), San Diego, CA, 2008.

[2] J. Bresnahan, A. Brown, D. Gunter, J. M. Schopf, M.

Swany, and B. L. Tierney. Log summarization and anomaly

detection for troubleshooting distributed systems. In

IEEE/ACM International Conference on Grid Computing

(Grid), Austin, TX, 2007.

[3] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,

and Dennis Fetterly. Dryad: Distributed data-parallel

programs from sequential building blocks. In European

Conference on Computer Systems (EuroSys), pages 59-72,

Lisbon, Portugal, March 21-23 2007.

[4] Kwangmoo Koh, Seung jean Kim, Stephen Boyd, and

Yi Lin. An interior-point method for large-scale L1-

regularized logistic regression. Journal of Machine

Learning Research, 2007.

[5] Chinghway Lim, Navjot Singh, and Shalini Yajnik. A

log mining approach to failure analysis of enterprise

telephony systems. In Dependable Systems and Networks

(DSN), pages 398-403, Lisbon, Portugal, June 24-27 2008.

[6] Xinghao Pan, Jiaqi Tan, Soila Kavulya, Rajeev Gandhi,

and Priya Narasimhan. Ganesha: Black-box fault diagnosis

for MapReduce systems. Technical Report CMU-PDL-08-

112, Carnegie Mellon University, September 2008.

[7] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz

Andre Barroso. Failure trends in a large disk drive

population. In USENIX Conference on File and Storage

Technologies (FAST), San Jose, CA, February 13-16 2007.

[8] James E. Prewett. Analyzing cluster log files using

Logsurfer. In Annual Conference on Linux Clusters, 2003.

[9] James E. Prewett. Listening to your cluster with LoGS.

In International Linux Cluster Conference (LCC), Austin,

TX, May 2004.

[10] Daniel A. Reed, Ruth A. Aydt, Roger J. Noe, Phillip

C. Roth, Keith A. Shields, Bradley W. Schwartz, and Luis

F. Tavera. Scalable performance analysis: The Pablo

performance analysis environment. In Scalable Parallel

Libraries Conference, pages 104-113. IEEE Computer

Society, 1993.

[11] Bianca Schroeder and Garth A. Gibson. A large-scale

study of failures in high-performance computing systems.

In Conference on Dependable Systems and Networks

(DSN), pages 249-258, 2006.

[12] Jon Stearley and Adam J. Oliner. Bad words: Finding

faults in Spirit's syslogs. In IEEE International Symposium

on Cluster Computing and the Grid (CCGRID), pages 765-

770, Washington, DC, USA, 2008.

[13] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: A

system for query, analysis, and visualization of

multidimensional relational databases. IEEE Transactions

on Visualization and Computer Graphics, 8(1):52-65, 2002.

[14] Wei Xu, Ling Huang, Armando Fox, David Patterson,

and Michael Jordan. Mining console logs for large-scale

system problem detection. In Workshop on Tackling

Computer Problems with Machine Learning Techniques

(SysML), San Diego, CA, 2008.

[15] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai

Budiu, Ulfar Erlingsson, Pradeep Kumar Gunda, and Jon

Currey. DryadLINQ: A system for general-purpose

distributed data-parallel computing using a high-level

language. In Symposium on Operating System Design and

Implementation (OSDI), San Diego, CA, December 8-10

2008.

