Nerpa: Network Programming with Relational and Procedural
Abstractions

Debnil Sur, Ben Pfaff, Leonid Ryzhyk, and Mihai Budiu
{dsur,bpfaff,Iryzhyk,mbudiu}@vmware.com
VMware

ABSTRACT

We introduce Nerpa, a new methodology for building programmable
networks. Nerpa automates many aspects of the process of pro-
gramming the network stack. To aid correctness, it ensures type
safety across the management, control, and data planes. To improve
scalability, an incremental control plane recomputes state in re-
sponse to network configuration changes. We have published an
implementation and examples.

1 INTRODUCTION

In the most popular approach for programming networks, the de-
veloper separately programs the management, control, and data
planes. In a common approach, the management plane is imple-
mented as an API backed by a database, the control plane as an
SDN controller written in an imperative language such as Java or
C++, and the data plane using flow-programmable switch software
or hardware [1-6, 8].

We have identified two primary challenges in our experience
building systems in this form. Correctness is the first challenge.
The control plane typically programs the network by issuing in-
stalling small program fragments, e.g. OpenFlow flows, in network
devices. The controller serves as a specialized compiler converting
policies into these program fragments. As an SDN system adds fea-
tures over time, flow rule fragments for various tables and priorities
end up scattered across a large codebase. It becomes difficult for the
developer to be confident of overall correctness across the feature
combination matrix.

Scalability is the second challenge: as the system grows, the
SDN controller must still respond quickly to changes. In return, this
demands incrementality. In response to a change, the controller
should not recompute and redistribute the entire network state.
Instead, the recomputation should be proportional to the amount of
modified state. Writing an incremental controller in an imperative
language such as Java or C++ demands either an unnatural coding
style or ad hoc, fragile support for incremental changes that seem
important in practice [7, 10].

We present Nerpa, a prototype of a programming framework
intended to address these classes of issues. To address correctness,
Nerpa pairs the DDlog control plane with a P4 data plane to write
a complete type-checked program. This provides more obvious
correctness than an OpenFlow-like data plane. While the latter
has some structure, it is not apparent to the controller, which
just generates program fragments. To address scalability, the pro-
grammer writes a Nerpa control plane in Differential Datalog,

Author’s address: Debnil Sur, Ben Pfaff, Leonid Ryzhyk, and Mihai Budiu, {dsur,bpfaff,
Iryzhyk, mbudiu}@vmware.com, VMware, ,

[
F)VSDB schema J DDlog ngmﬂ “ P4 program
:_ 7777777777 _ N k‘u | —P_‘—I _c—ompiler i
| DDlog compiler 11 STE :
\b ¢
management Plc\ne data Plome,

control Plome
state
synchronization

ST— /

Figure 1: The vision for Nerpa. The network programmer
writes the red boxes.

or DDlog for short, a declarative language whose implementa-
tion is fully and automatically incremental [9]. Our implementa-
tion is available as an open-source project with an MIT license at
https://github.com/vmware/nerpa, including a tutorial and a demo
application.

2 DESIGN

The Nerpa programming framework coordinates three pieces of
software. These correspond to the three classes of computations
executed by network devices:

Management plane: The system administrator configures the
Nerpa management plane by populating and modifying the con-
tents of an Open vSwitch Database (OVSDB) instance. Its schema
represents the high-level structure of the network.

Control plane: A DDlog program computes a set of output rela-
tions from the contents of some input relations. The Nerpa DDlog
program has two kinds of input relations: (1) representing the cur-
rent network configuration, synchronized from the management
database and (2) representing notifications from data plane packets
and events. The control plane output relations correspond to en-
tries for P4 tables. The Nerpa programmer implements the control
plane program to compute the output relations as a function of
the input relations. The DDlog compiler automatically makes this
computation an incremental process.

Data plane: The data plane is programmed using P4. The Nerpa
controller uses the P4Runtime API to install DDlog output relations
as table entries in the P4-enabled switch.

A Nerpa programmer supplies three files, as shown in Figure 1:
an OVSDB schema, which defines the management plane; a DDlog
program, whose rules define the control plane; and a P4 program,
which implements the data plane. To interface between these soft-
ware programs, Nerpa automates many tasks that previously re-
quired writing glue code, by generating the code that orchestrates

https://github.com/vmware/nerpa

the data movement between the planes. To facilitate this, DDlog
input and output relations are generated from the OVSDB schema
and the compiled P4 program. The Nerpa controller reads changes
from OVSDB and transforms them to inputs to the DDlog program.
It also transforms DDlog outputs into P4 table entries, and writes
those entries to the switch using the P4Runtime APL. When the P4
program sends a digest back to the Nerpa controller, the controller
transforms it into input to a DDlog relation whose contents can
also influence the controller’s behavior, forming a feedback loop.
In the compilation process, Nerpa typechecks the data definitions
and ensures that only well-formed messages are exchanged.

3 IMPLEMENTATION

We describe some details of our current prototype implementation.

3.1 Language-Specific Tooling

The glue layers between all these services are all written in Rust.
Rust’s low-level control and memory safety fit Nerpa’s goals well.
DDlog programs are also compiled to Rust by the DDlog compiler;
DDlog is in the core of the Nerpa stack. As a result, we built Rust
libraries for interfacing with OVSDB and P4Runtime. The OVSDB
Rust library uses the Rust bindgen crate to generate Rust foreign-
function interface bindings to OVSDB’s C codebase. The P4Runtime
Rust library uses the P4Runtime Protocol Buffer definition files to
generate Rust code for the API calls. It then exposes an end user
friendly API. Both libraries are included in the Nerpa repository.
We hope other projects in the P4 ecosystem find them useful.

3.2 Control and Data Plane Co-Design

Data exchange between the different planes requires an intermedi-
ate data representation. The control plane reads input changes from
the management plane and writes output changes to the data plane.
The data plane can also send notifications to the control plane, as in
MAC learning. In Nerpa, changes from the management plane are
represented by changes in OVSDB state. Communication between
the control plane and data plane uses the P4Runtime APIL. A packet
digest can be used to send notifications to the control plane over the
Stream RPC. Output changes modify entries in the match-action
tables using the Write RPC.

Since all communication flows through the control plane, DDlog
relations serve as the natural intermediate data representation. To
represent inputs from the management plane we used ovsdb2ddlog,
a tool which generates DDlog relations from an OVSDB schema.
We implemented p4info2ddlog, a tool to generate DDlog relations
from a P4 program. It consumes the “P4info” binary file, produced
by the p4 compiler, describing the tables and other objects in the
P4 program. From this, p4info2ddlog generates an input relation
for each packet digest and an output relation for each match-action
table. It also generates helper functions in Rust to convert data
between P4Runtime and DDlog types. This approach enables co-
design of the control plane and data plane and a close integration
between the two.

3.3 Example: Simple Network Virtual Switch

The Nerpa repository includes a simple network virtual switch as
an example implemented in Nerpa, called snvs. This implements

Sur, et al.

ovsd‘:lddlog P‘(iupoado"og
sws.ovsschema | ———= | sva_mpadl <—

ovsdb-tool \l/ pHe
- snvs.dl \'
rovso(b»server‘ [bmva —‘
— ddlog —
ruste

ovsdb_client Vv

(OVSDRB)

pYext
(P4Runtime)

Figure 2: The snvs example program as processed by Nerpa.
Black text represents a tool or program written as part of
Nerpa, while red represents an external program.

several important networking features, including VLANs, MAC
learning, and port mirroring. The Nerpa integration test executes
all layers of the stack, using OVSDB, the DDlog runtime, and the
P4 behavioral simulator BMv2.

The code snippets below implement a very simplified version
of the VLAN assignment feature. We generate an output relation
from a P4 match-action table and an input relation from an OVSDB
table. A Datalog rule then derives the output relation from the input
relation. This shows how Nerpa’s pieces fit together.

P4 match-action table DDlog output relation gener-

table InVlan {

ated from the P4 program

key = {
Std’mﬂa(‘)::'r)pvo”: exact @name(typedef InVlanAction =
: InVlanActionDrop

hdr.vlan.isValid (): exact @name(" |
has_vlan') @nerpa_bool; |
hdr.vlan.vid: optional @name("vid"

InVlanActionSetVlan{vid: bit<12>}
InVlanActionUseTaggedVlan

output relation InVlan(
port: bit<9s,
has_vlan: bool,
vid: Option<bit<12>>,
priority: bit<32>,
action: InVlanAction

)

}

actions = {
Drop;
SetVlan ;
UseTaggedVlan;

OVSDB schema DDlog input relation gen-

erated from the OVSDB

"Port": {

"columns": { schema
"idt: {"types {"key': {"type': "
. integer™h, .. || input relation Port (
tag": {"type’: {"key": {"type": wuid: uuid,
integer’}, "min": 0, "max": id: integer

) 1}, tag: Option<integer >,
;)

} primary key (x) x._uuid

DDlog rule for VLAN assignment written by programmer

InputVlan (port , false ,None,1,InputVlanActionSetVlan{vid}) :-
Port(.id = port, .tag = tag),
var vid = match tag {
None -> 0,
Some{tag} -> tag

4 CONCLUSIONS

Nerpa uses relational and procedural abstractions to improve the
correctness and scalability of network programs. OVSDB and the
DDlog data representation are used in the relational, incrementally
programmed control plane. This is co-designed with the imperative
data plane program, written in P4. We have provided a prototype
and example program of a simple network virtual switch. In future,
we plan to implement increasingly complex network programs.

Nerpa

REFERENCES

[1] PankajBerde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,

Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, and
Guru Parulkar. ONOS: Towards an open, distributed SDN OS. In Workshop on
Hot Topics in Software Defined Networking (HotSDN), page 1-6, 2014.

Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown,
and Scott Shenker. Ethane: Taking control of the enterprise. In SIGCOMM, page
1-12, 2007.

Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin Casado, Nick
McKeown, and Scott Shenker. NOX: Towards an operating system for networks.
SIGCOMM Computer Communication Review (CCR), 38(3):105-110, July 2008.
VMware Inc. VMware NSX network virtualization and security platform. https:
//www.vmware.com/products/nsx.html. Retrieved 2021.

Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anupam Chanda,
Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson, Andrew
Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben
Pfaff, Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj

l6

Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua Zhang. Network virtual-
ization in multi-tenant datacenters. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 203-216, Seattle, WA, April 2014.
Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,
Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and
Scott Shenker. Onix: A distributed control platform for large-scale production
networks. In Symposium on Operating System Design and Implementation (OSDI),
page 351-364, USA, 2010.

Ryan Moats. ovn-controller: Back out incremental processing. https://github.com/
openvswitch/ovs/commit/926c34fd7c2080543bf3ee63a4830e0dc5c4af12, August
2016.

Justin Pettit, Ben Pfaff, Han Zhou, and Ryan Moats. Practical OVN: Architecture,
deployment and scale of OpenStack networking. http://openvswitch.org/support/
slides/OVN_Austin.pdf, April 28 2016. OpenStack Summit.

Leonid Ryzhyk and Mihai Budiu. Differential Datalog. In Datalog 2.0, Philadelphia,
PA, June 4-5 2019.

Han Zhou. OVN controller incremental processing. In Open vSwitch 2018 Fall
Conference, San Jose, California, 2018. http://www.openvswitch.org/support/
ovscon2018/.

https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html
https://github.com/openvswitch/ovs/commit/926c34fd7c2080543bf3ee63a4830e0dc5c4af12
https://github.com/openvswitch/ovs/commit/926c34fd7c2080543bf3ee63a4830e0dc5c4af12
http://openvswitch.org/support/slides/OVN_Austin.pdf
http://openvswitch.org/support/slides/OVN_Austin.pdf
http://www.openvswitch.org/support/ovscon2018/
http://www.openvswitch.org/support/ovscon2018/

	Abstract
	1 Introduction
	2 Design
	3 Implementation
	3.1 Language-Specific Tooling
	3.2 Control and Data Plane Co-Design
	3.3 Example: Simple Network Virtual Switch

	4 Conclusions
	References

