
Unified Query Processing for JSON Documents and Indexes

Mihai Budiu Gordon Plotkin∗ Yuan Yu Li Zhang
Microsoft Research Univ. of Edinburgh Microsoft Research Microsoft Research

ABSTRACT
We present JPath, a JSON database query language, and its
syntax, semantics, and implementation. We introduce an in-
dexing data structure for answering JPath queries, and pro-
vide a theory unifying query execution on data and index
trees using operations on matrices with lattice-valued ele-
ments.

1. INTRODUCTION
JSON [11] is becoming the lingua franca for computer

data interchange, supplanting XML in many applications,
both on the client-side and on the server-side. JSON is now
the format of choice for representing data in many commer-
cial products and research projects [4, 18, 22].

One important operation performed on JSON databases
is the retrieval of JSON documents with a certain structure.
We present JPath, a succinct query language for perform-
ing structural queries on JSON objects, closely related to
Core XPath [7]. We model JSON objects as node-labeled
unordered trees; JPath is composed of a small set of query
operations that map naturally to the tree data model. While
very succinct, JPath captures essential aspects of querying
tree data.

Our aim is to enable the construction of efficient query en-
gines for this core language that can potentially be extended
by layering additional functionality on top. While XML data
have been modeled as trees as well, the tree model fits JSON
particularly well because of the simplicity of the JSON for-
mat. We have implemented our query language as a practical
system, closely following the theoretical design.

We use index trees to accelerate query execution when
many trees have a similar structure. An index tree sum-
marizes the structure of an indexed collection of trees. The
query process is executed in two stages: first, a query is run
directly on the index tree to quickly eliminate non-matching
trees; next, we run the query on each individual tree which
has survived the first stage. For this process to work prop-
erly, we make sure the query execution on the index tree is
conservative: it may provide false positives, but never false
negatives. Indexing policies control the trade-off between
index tree size, query execution time, and result accuracy.

Similar index structures have been known since the intro-
duction of DataGuides [6]. For example in [16] they are pro-
∗Work performed while visiting Microsoft Research

vided for a language of regular path expressions and in [12,
21] for branching path query languages. A main theme in
such works is the construction of optimal index trees for pre-
cise indexing. Further work, including [12], and surveyed
in [10], traded off index tree size at the expense of precision
for a smaller class of queries.

We focus on processing large document databases, and
thus we optimize by trading-off precision for size, for better
locality (e.g., to allow the indices to fit in main memory). To
this end, we aim only at avoiding false positives. A distin-
guishing feature of our query algorithm is that it is executed
directly on the indices, where nodes may have multiple la-
bels for a more compact index. The algorithm is shown to
be tight: it always produces the most accurate result for any
query for a given index tree. While we do not have any theo-
retical results on the efficiency of eliminating false positives
for an index tree of given size, we have some encouraging
experimental evidence that indices can be small and effec-
tive in eliminating non-matching documents.

As a main contribution, we give a unified view of queries
on trees and index trees. The results of queries are matri-
ces which are node-indexed (for both rows and columns)
over a distributive lattice, and the execution of a complex
query is recast as the application of matrix operations to the
matrices resulting from its sub-queries. Query semantics on
trees and index trees are the same except that they operate on
different underlying lattices: documents are modeled using
the Boolean lattice; and index trees are modeled as elements
of the powerset lattice over the ground set of indexed trees.
Employing this unified view, we show that the query on the
index tree is indeed conservative and tight. Being based on
matrix operations, this semantics leads to efficient query ex-
ecution algorithms.
Organization of the paper. In Section 2 we model JSON
objects as node-labeled unordered trees, and in Section 3,
we present the syntax and semantics of JPath. Our main
contributions are presented in Section 4, which describes the
construction and the use of index trees, and in Section 5, pre-
senting our unified formalism for querying individual docu-
ments and index trees.

In Section 6 we show how the matrix semantics can be di-
rectly translated into an implementation. Section 7 presents
experimental measurements on a large-scale data-set show-
ing that JPath indexing overhead is low and can substantially
speed-up some classes of queries. Section 8 discusses the

1

relation of JPath with Core XPath, and other languages for
querying JSON objects.

Several optional appendices support the presentation, in-
cluding proofs of our main theorems. Appendix A presents
various matters needed to build a practical system based on
JPath: the cut operator, handling JSON data types, user-
defined node-matchers, node label computations, and lazy
lattice computations. Appendix B provides an algorithm to
translate a JSON document to a tree.

2. JSON DOCUMENTS AS TREES
We assume that JSON documents conform to the official

JSON grammar [11], summarized as:

value := basevalue | object | array
object := { [label:value [,label : value]∗]}
array := [[value [,value]∗]]

Figure 1 shows two JSON documents giving partial in-
formation about two hypothetical companies. We represent
each as an unordered tree (i.e., the order of the children of
a node is unspecified). To do this, we first eliminate arrays,
representing them as objects with numeric labels. Thus:

[{ "city": "Moscow" }, { "city": "Athens" }]

is rewritten as:
{ 0: { "city": "Moscow" }, 1: { "city": "Athens" } }

The nodes of the trees are labeled with typed values: the
root is labeled with an empty label; each internal node is
labeled with a JSON object label (strings or integer indices
in the case of array elements); and each leaf is labeled with
a JSON basevalue. Figure 1 shows the trees corresponding
to the two JSON documents. The tree representation mod-
els JSON documents accurately, except for the ordering of
siblings1.

Notation: We write Σ for the set of labels, taken to be a
collection of strings over some given alphabet. We use> for
“true” and⊥ for “false”. We use P(X) to denote the power-
set of a set X , i.e., P(X) = {x | x ⊆ X}. We write [n] for
the set {1, . . . , n}.

We define a labeled rooted JSON tree as a quadruple:

t = (Vt, Ct, labelt, roott).

where:

• Vt is the set of nodes of t,

• Ct : V → P(V) gives the set of children Ct(v) of a given
node v. It describes the child relation, assumed to form a
tree,

• labelt : V → Σ assigns a label to each node, and

• roott ∈ V is the root of t.
1If desired our scheme could be adapted to maintain information
about this ordering by using an encoding similar to the array en-
coding.

We extend Ct to operate on sets of nodes: for U ⊆ V , define
Ct(U) =def ∪v∈UCt(v). We drop the index t when it is
clear from the context, writing just (V,C, label, root).

3. THE JPATH QUERY LANGUAGE
In this section we define the core of the JPath query lan-

guage, the supplementary cut operator and other additions
required in a practical implementation are discussed in Ap-
pendix A.

Our query language is functional: a query does not mutate
the trees queried. When a query is executed on a collection
of JSON trees, it is executed independently on all the trees
in the collection. Running the query on a tree produces a set
of nodes in the tree.

JPath Syntax: The following are special characters: *, ^,
& , | , /, (,). The complete syntax of JPath queries is given in
Figure 2. There are eight different ways to construct a query:
three primitive, three binary operators, all associative; and
two unary operators. The primitives include nodematchers;
they are ranged over by the metavariable nm, and denote
functions from labels to Boolean values.

query:= nm nodematcher
ε empty query
/ child operator
query query query sequence
(query | query) logical or
(query & query) logical and
(query*) Kleene star
(^query) snap operator

Figure 2: Syntax of JPath query language.

JPath Semantics: A query is always applied at a tree node
and returns a set of tree nodes. For a given tree t we write
Tt [[q, v]] ⊆ Vt for the meaning of query q at a node v ∈ Vt.
When we apply a query q to a tree we apply it to the root
node of the tree, yielding Tt [[q]] =def Tt [[q, roott]]. We say
that “q matches t” if it produces a non-empty set of result
nodes. In this section we assume a fixed JSON tree t and
drop the subscripts, writing T [[q, v]], etc.

Figure 3 gives the semantics of JPath queries, where qn

abbreviates
n︷ ︸︸ ︷

q . . . q (i.e., q repeated n times). We assume a
given semantics N [[nm]] : Σ→ {>,⊥} for nodematchers.

As queries are created by stitching together simpler queries
together, e.g., using & , their semantics is defined recursively.

Here is an informal description of the semantics:

• Nodematchers denote given Boolean functions that are ap-
plied to the current node label. The (singleton set of the)
node itself is returned if the function returns “true” >; oth-
erwise the empty set. One common kind of nodematcher
maps a single label to >; such nodematchers are written as
the label themselves.

• Epsilon ε is the empty query; it always returns the node to
which it is applied.

2

{
"location":
[

{ "country": "Germany", "city": Berlin },
{ "country": "France", "city": "Paris" }

],
"headquarters": "Belgium",
"exports":
[

{ "city": "Moscow" },
{ "city": "Athens" }

]
}

"location" "headquarters" "exports"

"Belgium" 0 1

"city"

"Moscow"

"city"

"Athens"

0

"country" "city"

"Germany" "Berlin"

1

"country" "city"

"France" "Paris"

{
"location":
[

{ "country": "Germany", "city": Bonn }
],
"headquarters": "Italy",
"exports":
[

{ "city":"Berlin", "dealers":[{"name":"Hans"}]},
{ "city": "Amsterdam" }

]
}

0

"headquarters" "exports"

"country" "city"

"Italy" 0 1

"Germany" "Bonn"

"city" "dealers"

"Berlin" 0

"city"

"Amsterdam"

"name"

"Hans"

"location"

Figure 1: Two JSON documents and their tree representations.

T [[nm, v]] =

{
{v} if N [[nm]](label(v)) = >
∅ otherwise.

T [[ε, v]] = {v}
T [[/, v]] = C(v)
T [[q1 q2, v]] = ∪u∈T [[q1,v]]T [[q2, u]]
T [[q1 | q2, v]] = T [[q1, v]] ∪ T [[q2, v]]
T [[q1 & q2, v]] = T [[q1, v]] ∩ T [[q2, v]]
T [[q*, v]] = ∪n≥0T [[qn, v]]

T [[^q, v]] =

{
{v} if T [[q, v]] 6= ∅
∅ otherwise

Figure 3: JPath semantics.

• The child operator / returns all the children of a node.

• The sequence operator concatenates two queries. To com-
pute the result of q1q2 at a node v, one computes the results
of q1 at v and then applies q2 to each of them. The result of
the combined query is the union of these applications of q2.
For example, the query // matches all the grand-children of
the root node. The query /"headquarters"/"Italy" is a
sequence of 4 queries, two nodematchers, and two children,
and in Figure 1 only produces a match in the second tree.

• The operators or | and and & combine two queries. They
apply both queries at the current node, but “or” unions of the
results while “and” intersects them.

• The star operator * is inspired by the Kleene star oper-
ator from regular expressions. The result of the star of a
query q is the union of the results obtained from applying
q several times. We define its k-bounded approximation as
∪n≤kT [[qn, v]]. The infinite sequence of k-bounded approx-
imations is monotonically increasing, and so converges in at

most |V | steps. For example, the query (/*)/"Berlin"
produces results in all trees with a non-root node labeled
"Berlin".

• The snap operator ^ is more unusual. It checks whether
a query matches a node and then discards the result of the
match. It can be used to detect complex topologies, e.g.,
(^/"headquarters"/"Italy")/"exports"/"city"
produces matches of nodes "Berlin" and "Amsterdam" in
our second tree. The operator is called “snap” because it
resumes query matching at the node where it is applied; in
this example, the "exports" node must be a sibling of the
"headquarters" node.

We refer to Appendix C for some more complex examples
of JPath queries.

All our query operators are monotone: when applied to a
tree with a larger set of nodes and the same root they will
produce a larger result. This ensures both an efficient query
matching algorithm and an effective indexing method. This
is why we did not introduce a negation query.

4. INDEXING FOR JPATH QUERIES

4.1 Building Index Trees
The idea of indexing is to represent an indexed set of trees

T = {ti | i ∈ [n]} by a single summary node-labeled index
tree, denoted by σ(T) (or just σ when T is clear from the
context). We require that the roots of all the ti ∈ T have the
same label2. The index tree σ is an approximate summary of
2With the tree representation of JSON described in Section 2, our

3

0

"headquarters" "exports"

"country" "city"

"Belgium"
0 1

"Germany"
"Bonn"

"city" "dealers"

"Berlin" 0

"city"

"Amsterdam"

"name"

"Hans"

"location"

1

"country" "city"

"France" "Paris"

"Athens" "Moscow"

"Italy"

"Berlin"
{1,2}

{2} {1}

{1,2}

{1,2}

{1,2}

{1,2}

(a) An index tree for the two documents in Figure 1. The
black nodes with continuous lines are common to both trees,
the dashed blue nodes come only from the first tree, and the
dotted red nodes from the second tree. The sets {1}, {2} and
{1,2} denote the inverted indexes associated to each node
(only some are shown).

*

"headquarters" "exports"

"country"
"city"

"Belgium"
0 1

"Germany"
"Bonn"

"city" "dealers"

"Berlin" 0

"city"

"Amsterdam"

"name"

"Hans"

"location"

"France"
"Paris"

"Athens" "Moscow"

"Italy"

"Berlin"

(b) Compressing the labels of the index tree from (a). The
arrow points to a node obtained by merging and collapsing
0 and 1 nodes in (a). The merged node has a special label *,
denoting “all possible labels”. Note that the descendants of
0 and 1 get recursively merged into the descendants of *.

Figure 4: Examples of index trees.
the trees in T . Queries can be executed directly on σ, with
result both a set of nodes, and a set I ⊆ [n] of indices of
trees that may match the query; I contains no false negatives
(i.e., any ti with i /∈ I does not match the query), though it
may contain false positives.

Each node in the index tree corresponds to a set of nodes
from the component trees via maps ri : Vti → Vσ , associat-
ing to each ti node its representative in σ.

Figure 4(a) shows a possible index tree built for our ex-
ample trees in Figure 1. Intuitively, we try to “overlap” the
component trees and represent common structure only once,
similar to trie data structures. In the figure we use color
and all black, continuous line nodes exist in both component
trees, while the dashed blue nodes exist only in the first tree,

JSON tree roots always have an empty label, so this constraint is
always satisfied.

and the dotted red nodes only in the second tree. Each node
in the index maintains an inverted index with a list of the cor-
responding tree indices (so a black simple node would have
the list {1,2}, a dashed blue node the list {1}, and a dotted
red node the list {2}). We associate to each node of v ∈ Vσ
an inverted index I(v) =def {i | ∃u ∈ Vti . ri(u) = v}.
The figure shows the inverted indexes of some of the nodes;
all nodes with the same color and line style have the same
inverted index.

To allow compact index trees, a node v ∈ σ may have
multiple labels. If the set of labels in a node grows large
we can over-approximate it, e.g., using the set of all labels
(depicted by a special symbol *). This makes indexing less
precise but requires less storage space and shortens query
evaluation time. In figure 4(b) one sees that the 0 and 1

nodes have been “merged” and then “collapsed” into *.
The index tree is most useful when the JSON trees in the

database fall into a small number of groups, each of whose
members have a “similar” structure, as happens frequently
in practice. The common structure is represented only once
in the index tree, providing a compact representation for a
large number of documents.

Formalizing, an index tree σ for an indexed set of trees
T = {ti | i ∈ [n]} is a structure:

(Vσ, Cσ, labelσ, rootσ, Iσ)

where:
• Vσ is the set of nodes of the index tree,
• Cσ : Vσ → P(Vσ) gives the child relation, assumed a tree,
• labelσ : Vσ → P(Σ) is a labeling function, which asso-
ciates a set of labels from Σ to each node,
• rootσ ∈ Vσ is the root of t, and
• Iσ : Vσ → P([n]), is an inverted index, which associates a
set of tree indices to each node.

We say that maps ri : Vti → Vσ, i ∈ [n] faithfully repre-
sent ti in σ if they obey the following conditions:
Root and Child consistency: Roots and children in a tree
map to roots and children in the index tree:

∀i ∈ [n]. ri(rootti) = rootσ ,
∀i ∈ [n], v, w ∈ Vti . w ∈ Cti(v) =⇒ ri(w) ∈ Cσ(ri(v)) .

Label consistency: Each index tree node label includes the
labels of all represented tree nodes:

∀i ∈ [n], t, v ∈ Vti . labelti(v) ∈ labelσ(ri(v)) .

Inverted index consistency: If v is a node of ti, then i is in
the inverted index of ri(v) :

∀i ∈ [n], v ∈ Vti . i ∈ I(ri(v)) .

4.2 Index Tree Construction
Figure 5 gives a pseudocode implementation that builds

an index tree from an indexed set of trees T = {ti | i ∈ [n]}.
The function MERGE has arguments a parent node and a sub-
set of its children; the children are merged into a single node,

4

removed from the tree and replaced with the merged node.
The merged node label is the union of all children’s labels. A
policy (specified via a labelThreshold value) controls when
labels are collapsed (into a "*" label).

function MERGE(node parent, node[] nodes):node
result = new node();
label(result) = ∪v∈nodeslabel(v)
if label(result).Length > labelThreshold then

label(result) = * . Approximate label
end if
if parent 6= null then

parent.children.Remove(nodes)
parent.children.Append(result)

end if
result.children = ∪v∈nodesv.children
result.parent = parent
I(result) = ∪v∈nodesI(v)
return result

end function

procedure BUILDINDEX(jsonTree[] trees)
for all i in 1. . . trees.MaxIndex, v in Vtrees[i] do

I(v) = {i} . Create an inverted index
end for
allRoots = {roott | t ∈ trees}
indexroot = MERGE(null, allRoots)
while ∃v ∈ Vσ . (c = PICKCHILDREN(v))6= ∅ do

MERGE(v, c)
end while

end procedure
Figure 5: Pseudocode for building an index tree.

The main procedure is BUILDINDEX. It starts by creating
an inverted index for each node containing just the index of
its parent tree, in fact transforming each tree into an index
tree representing just the tree itself. A policy controls which
nodes are merged and is expressed in terms of an unspeci-
fied function called PICKCHILDREN, which selects a subset
of children from each node to merge. In practice we ex-
pect that this function chooses children of its argument node
v with identical labels for merging; this works well when
many trees in the collection have similar structures.

4.3 Running queries on index trees
The index tree constructed above can be viewed as a com-

pact “union” of all the JSON trees in the database. Since the
index is also a tree, we can run the query against it to emu-
late querying against all the trees in the database. Then we
can use the inverted index to find out the “candidate trees”
which might match the query. The crucial property is con-
servativity, that we never miss any result using this proce-
dure. In this section, we first give a conservative algorithm
which is direct extension of the previous query matching al-
gorithm. We then present a (still conservative) refinement
which gives a more precise candidate set and leads us to our
unified framework for querying individual trees and index

trees (in Section 5).
We slightly modify the query matching algorithm, in order

to handle multiply-labeled nodes. The inverted indexes are
used to retrieve the trees that may match the query from the
set of nodes the algorithm returns. For example, a query
that returns a dotted red node by running on the index tree
from Figure 4(a) or (b) may only match the second of the
documents in Figure 1.

We write Iσ [[q, v]] for “the result of query q run on index
tree σ when applied to a node v ∈ V (σ)”. The definition of
I is almost identical to that of T as in Figure 3 except that
the nodematcher case is slightly different. This is because
each node in the index tree may result from merging several
nodes in the JSON trees and therefore may be associated
with multiple labels. A node matches a nodematcher as long
as any of the associated labels does.

I [[nm, v]] =

{
{v} if ∃l ∈ label(v). N [[nm]](l) = > ,
∅ otherwise.

The following theorem states that the result of a query q
run on an index tree σ(T) is a conservative approximation
of the execution of the query on any tree in T ; the straight-
forward proof is by induction on q and can be found in Ap-
pendix D.

THEOREM 4.1. Let {ri | i ∈ [n]} faithfully represent a
set of trees {ti | i ∈ [n]} in an index tree σ. Then:

∀q, i ∈ [n], v ∈ Vti . ri(Tti [[q, v]]) ⊆ Iσ(T) [[q, ri(v)]].

Thus running q starting at node v in a tree ti produces a set of
nodes T [[q, v]] which correspond under ri to the set of nodes
produced by running q on the σ node corresponding to v:
see Figure 6.

Tree i
Index tree

q

q

v ri(v)

[[q,v]]

[[q, ri(v)]]

ri([[q,v]])

ri

ri

Figure 6: Indexes provide an over-approximation. Run-
ning the query on an index tree will always give a result
which contains the result obtained running the query on
any tree.

Executing a query on the index tree gives a set of index
tree nodes I [[q]] =def I [[q, rootσ]]. By Theorem 4.1 we
have ri(Tti [[q]]) ⊆ Iσ(T) [[q]], for i ∈ [n]. So, using in-
dex consistency, we can look at ∪v∈I [[q]]I(v), the inverted
indexes of these nodes, to find out which trees may match
the query.

Looking just at I [[q, v]] may be too conservative:

5

EXAMPLE 4.2. Consider two simple JSON documents,
each describing a simple key-value pair, with keys labeled
K and values labeled V:

t1 = {K : k1, V : v1} t2 = {K : k2, V : v2}

and an index tree with the shape:

σ = {K : {k1, k2}, V : {v1, v2}} .

Consider the query q=/^(K/k1)/V/ which fetches the
value with associated key k1. The query result I [[q]] con-
tains both nodes labeled V in σ, and as a result of running
the query on σ we cannot eliminate any JSON tree. However,
the sub-query q′ = K/k1 is very selective, and only matches
nodes in t1. But when the algorithm executes the step for the
^ operator it “forgets” this fact.

We next augment query processing on index trees to record
the reason for a node to be included in the result; this makes
the algorithm more selective. For each query step we main-
tain not just a set of index tree nodes, but also for each such
node a set of the tree indices that contributed to selecting this
node; this set is obtained from the inverted indexes. For ex-
ample, in the above example, when matching the subquery
^(K/k1) on σ, we also retain the inverted index stored on
k1, {1}, and carry this information through the query. So
only t1 appears in the final result. Since we need to main-
tain an index set for each node in the result, we define the
semantics J [[q, (u, v)]] ⊆ [n] of a query q with respect to
pairs of nodes u, v; this semantics represents the set of trees
which may produce v in the result when matching q against
the root node u. If J [[q, (u, v)]] = ∅, then v /∈ Tq [[u]]. The
formal definition of J [[q, (u, v)]] is shown in Figure 7.

• q = nm, q = ε, q = /:

J [[q, (u, v)]] =

{
I(v) if v ∈ I [[q, u]],
∅ otherwise.

• J [[q1 q2, (u, v)]] = ∪w∈σ(J [[q1, (u,w)]] ∩ J [[q2, (w, v)]])

• J [[q1 | q2, (u, v)]] = J [[q1, (u, v)]] ∪ J [[q2, (u, v)]]

• J [[q1 & q2, (u, v)]] = J [[q1, (u, v)]] ∩ J [[q2, (u, v)]]

• J [[q*, (u, v)]] = ∪n≥0J [[qn, (u, v)]]

• J [[^q, (u, v)]] =

{
I(u) ∩ (∪w∈σJ [[q, (u,w)]]) if v = u,

∅ otherwise.
Figure 7: Refined index tree query matching function.

For any u, v ∈ Vσ , J [[q, (u, v)]] is defined, and, as can
be proved by induction, J [[q, (u, v)]] ⊆ I(u). In addition,
we have the following property of J . The proof is again by
induction on q.

THEOREM 4.3. Let {ri | i ∈ [n]} faithfully represent a
set of trees {ti | i ∈ [n]} in an index tree σ. Then: ∀q, i ∈
[n], u, v ∈ Vti . v ∈ Tti [[q, u]] =⇒ i ∈ J [[q, (ri(u), ri(v))]]

To find the complete set of trees that may match a query
we union all witnesses: J [[q]] =def ∪v∈σJ [[q, (rootσ, v)]].

Then the above theorem implies that if q matches ti then
i ∈ J [[q]], i.e. J [[q]] does not miss any query results. Since
J [[q, (u, v)]] “remembers” more information than I(I [[q, u]]),
it provides a more precise approximation.

EXAMPLE 4.4. Consider again Example 4.2. We obtain:
J [[q]] = {1}, which filters out t2.

5. LATTICE SEMANTICS OF JPATH
We now present a single function which generalizes the

matching functions of Sections 3 and 4. In the unified defi-
nition we treat all trees homogeneously, whether JSON trees
or index trees. Matching returns an element of a distributive
lattice: precise matching (as done on JSON trees) is modeled
using the Boolean lattice O, with just two elements ⊥≤ >;
and imprecise matching (on index trees) is modeled using a
finite power-set lattice, of sets of tree indices (the general fi-
nite powerset lattice F(X) consists of all finite subsets of a
set X , ordered by inclusion).

Starting from the J function defined in Section 4.3 it is
natural to model queries by matrices, viewing J [[q, (u, v)]]
as a matrix indexed by u and v. We use matrices with lattice-
valued elements. Figure 8 shows the structure of our node-
indexed matrices.

start u

end v

query
result

Figure 8: Matrix representation of a query operation q.
Rows and columns are indexed by tree nodes. The start
node u corresponds to a row, and the end node v cor-
responds to a column. The (u, v) entry is the result of
running q starting at node u and ending at node v, tak-
ing this to be ⊥ if node v is not part of the query result.

5.1 Notation
We work with distributive lattices, such as O and F(X),

with a join operation ∨ and a meet operation ∧:

(L,⊥,>,∨,∧) .

We consider vectors and matrices over L. Given a finite
set of indicesA the collection VecL(A) of L-vectors overA
consists of all functions ~x : A→ L. As usual, the index no-
tation ~x[a] denotes the value of ~x at a ∈ A. Similarly, given
finite sets A,B, the collection MatL(A,B) of L-matrices
overA andB consists of all functionsM : A×B → L, and
we use the usual index notation M [a, b] for the value of M
at a ∈ A and b ∈ B.

We can compose (multiply) vectors and matrices as usual.
Given column vectors ~x ∈ VecL(A), ~y ∈ VecL(B), M ∈

6

MatL(A,B), and N ∈MatL(B,C), we define:

(~xtM)[b] =def

∨
a∈A(~x[a] ∧M [a, b]) ,

(M~y)[a] =def

∨
b∈B(M [a, b] ∧ ~y[b]) ,

(MN)[a, c] =def

∨
b∈B(M [a, b] ∧N [b, c]) .

Note that ∧ and ∨ play the roles of multiplication and
addition. Using the distributivity of the lattice one can prove
the associativity of binary operation, and there is an identity
matrix IA ∈Mat(A,A), where IA[a, b] = >, if a = b, and
⊥ otherwise. We write >A for the top element of Vec(A):
>A[a] = >.

Both VecL(A) and MatL(A,B) inherit distributive lat-
tice structures from L, via the point-wise orderings:

~x ≤ ~y ≡def ∀a. ~x[a] ≤ ~y[a] ,
M ≤M ′ ≡def ∀a, b. M [a, b] ≤M ′[a, b] .

Sups and meets are point-wise, for example:

(M ∨N)[a, b] = M [a, b] ∨N [a, b] .

Composition commutes with binary joins, but, in general,
not with binary meets.

Define the diagonal operator ∆ : VecL(A)→MatL(A,A):

(∆V)[a, b] =

{
V [a] if a = b ,
⊥ otherwise.

A matrix M with elements from O can be seen as a relation
R, where R(a, b) =def (M [a, b] 6=⊥).

A homomorphism k between two finite distributive lat-
tices L and L′ is a function k : L → L′ which preserves
meets and joins:

k(a ∨L b) = k(a) ∨L′ k(b) ,
k(a ∧L b) = k(a) ∧L′ k(b) .

Change of basis Given a homomorphism of finite distribu-
tive lattices:

k : L→ L′ ,

we can apply it toL-vectors and matrices to obtainL′-vectors
and matrices:

ko : MatL(A,B)→MatL′(A,B) ,

by function composition:

(ko(M))[a, b] = k(M [a, b]) .

Note that ko commutes with the composition operations on
vectors and matrices. ko is also a lattice homomorphism, on
the lattices with matrix values.

5.2 Labeled trees and queries
Consider a distributive latticeL. In this section we assume

that Σ is finite and model both JSON and index trees using a
single structure, called an L-labeled tree, of the form:

τ = (V,C, label) .

where V is a set of nodes, C ∈ MatL(V, V) is called the
child matrix, and label ∈MatL(V,Σ) is called the label-
ing matrix.

We define a child relation, written using the infix operator
>−−, defined by:

v >−−w ≡ C[v, w] 6=⊥ .

We require that the child relation makes the graph (V,>−−) a
tree. We write v >−−l w for C[v, w] = l. The child matrix is
more expressive than the usual child relations as each child
can be labeled with a value from L; in practice so far, the C
matrix uses just ⊥ and >.

Any JSON tree t corresponds to an O-labeled tree tm in an
evident way, with > ∈ C[v, w] iff w ∈ Ct(v). Any indexed
tree σ, with indices [n], corresponds to an F([n])-labeled
tree σm =def (V ′, C ′, label′), where V ′ = Vσ , C ′ is the
evident {⊥,>}-valued matrix corresponding to Cσ , and:

label′[v, a] =def

{
Iσ(v) a ∈ label(v) ,
∅ otherwise.

Note that the labeling matrix takes over the role of both the
node labels in the index tree (because it is indexed by V
and Σ), and the inverted indexes (because the values are in
L). The labeling matrix is also more flexible than the index
tree construction, since it may have a different inverted index
(lattice value) for each label.

The semantics of nodematchers nm is defined by a vector:

N [[nm]] ∈ VecL(Σ) .

As with C, the formalism allows the nodematcher vector
to have arbitrary lattice-valued elements, but in our applica-
tion these matrices contain just ⊥ and >.

Figure 9 gives the recursive definition of the matrix se-
mantics of a query q when applied to a tree τ :

Rτ [[q]] ∈MatL(V, V).

Rτ [[nm]] = ∆(labelN [[nm]])
Rτ [[ε]] = IV
Rτ [[/]] = C
Rτ [[q1 | q2]] = Rτ [[q1]] ∨ Rτ [[q2]]
Rτ [[q1 & q2]] = Rτ [[q1]] ∧ Rτ [[q2]]
Rτ [[q1q2]] = Rτ [[q1]]Rτ [[q2]]
Rτ [[q*]] =

∨
n≥0 (Rτ [[q]])n

Rτ [[^q]] = ∆(Rτ [[q]]>V)

Figure 9: Query semantics in terms of matrices.

In particular the semantics of q* is well-defined as the sup
is finite. This is because the elements of the power matrices
(Rτ [[q]])n all lie in the finite sub-lattice of L generated by
the elements of the matrixRτ [[q]] [5].

One can show that for each JSON tree t, u ∈ Tt [[q, v]] iff
Rtm [[q]][v, u] = >, and that for each index tree σ, with in-
dices [n], J [[q, (v, u)]] = Rσm [[q]][v, u] (making the evident
adjustments to the semantics of nodematchers).

7

5.3 Approximation results
Recall that the main idea of indexing is to produce a sin-

gle tree that “summarizes” the structure of a collection of
trees. Running the query on the index tree produces a set
of tree indices that may match the query. There are two im-
portant desired properties of this process: (1) the index tree
is “sound”, never losing results; (2) the query function is
“tight” not producing too many false positives. In this and
the following section, we will formalize and prove these no-
tions.

To prove soundness, we first define the notion of conser-
vative approximation of a tree with the property that if a
tree τ ′ is a conservative approximation of τ , then any query
which matches τ is guaranteed to match τ ′. Hence, once
the index tree σ is a conservative approximation of all the
trees in the collection, then we can guarantee soundness by
using σ as the summary. The precise notion of conservative
approximation is defined via subhomomorphisms between
labeled trees.

A subhomomorphism h : τ −→ τ ′ between two L-trees
τ = (V,C, label) and τ ′ = (V,′ C ′, label′) is a map h :
V → V ′ such that:

Child consistency: If v >−−l w then h(v)>−−l′ h(w), with
l ≤ l′, and

Label consistency:

∀v ∈ V, l ∈ Σ. label[v, l] ≤ label′[h(v), l].

We may regard h as a matrix H ∈MatL(V, V ′), where:

H[v, w] =

{
> h(v) = w ,
⊥ otherwise.

In terms of matrices, the above two conditions become:

Child consistency: CH ≤ HC ′.

Label consistency: label ≤ Hlabel′.

THEOREM 5.1. For any query q we have:

Rτ [[q]]H ≤ HRτ ′ [[q]] ,

and so for any subhomomorphism h : τ −→ τ ′

h(Rτ [[q]][v, w]) ≤ Rτ ′ [[q]][h(v), h(w)] .

The intuition behind the second formula is that in Fig-
ure 6, where h takes the role of the function ri. The proof
is by induction on the structure of q and can be found in
Appendix E.Intuitively, the theorem says that once a tree τ ′

conservatively approximates another tree τ , then the query
result on τ ′ can only produce a more conservative result.

It is possible to define a notion of “lossless” approxima-
tion, with respect to JPath queries, via strong homomor-
phism between trees. A strong homomorphism h : τ −→ τ ′,
where τ = (V,≤, label) and τ ′ = (V,′≤′, label′), is a
map h : V → V ′ such that we have:

1. (a) If v >−−l w then h(v)>−−l′ h(w), with l ≤ l′.
(b) For every w>−−l′ h(v) we have:

l′ ≤
∨
{l | v′>−−l v,∃v′ ∈ V. h(v′) = w} .

2. ∀v ∈ V, l ∈ Σ. label[v, l] = label′[h(v), l].

Condition 1(b) ensures that there are no “superfluous” chil-
dren in the relation C ′ or labels in label′.

In terms of matrices h obeys the above condition iff:

CH = HC ′

label = Hlabel′

THEOREM 5.2. For any query q we have:

Rτ [[q]]H = HRτ ′ [[q]]

and so for any homomorphism h : τ −→ τ ′,

h(Rτ [[q]][v, w]) = Rτ ′ [[q]][h(v), h(w)] .

The proof of Theorem 5.2 is similar to that of Theorem 5.1,
replacing all inequalities with equalities.

Next we show that the matching results can be preserved
between trees defined over different lattices via lattice homo-
morphisms. This is needed as an individual tree is defined
over the Boolean lattice but the index tree over the powerset
lattice.

Assume that we have a homomorphism of distributive lat-
tices k : L→ L′, and two node matcher semanticsN [[nm]]L
and N ′[[nm]]L′ , inducing two query semantics Rτ [[q]]L and
Rτ ′ [[q]]L′ . Via the change of basis k, every L-labeled tree τ
becomes an L′-labeled tree ko(τ).

THEOREM 5.3. If for all nm we have ko(N [[nm]]L) =
N ′[[nm]]L′ . Then for all q, L-labeled tree τ :

ko(Rτ [[q]]L) = Rko(τ)[[q]]L′ .

PROOF. Using the definition of the semantics and the fact
that change of basis commutes with matrix composition, IV ,
and ∆, and ∧, ∨, and >.

5.4 Indexing
With the properties proved in the previous section, we

now show that the indexing method is sound and optimal
for any given index tree. Suppose that we have
• an [n]-indexed collection of O-labeled trees
ti = (Vi, Ci, labeli),

• an indexing tree, by which we mean an F([n])-labeled
tree, σ = (V,C, label), and

• maps hi : Vi → V (i ∈ [n]).
The following corollaries give conditions on the hi that

enable the answers of queries on ti and σ to be related.

COROLLARY 5.4. Soundness: Suppose that

Child consistency For all v, w ∈ Vi, if v >−−i w then
hi(v)>−−x hi(w), with i ∈ x;

8

Label consistency For all v ∈ Vi, if labeli[v, a] = > then
i ∈ label[hi(v), a].

Then for all queries q, we have:

Rti [[q]][v, w] = > ⇒ i ∈ Rσ[[q]][hi(v), hi(w)] .

i.e., if a query returns a result on a tree, it will return that
tree when run on the index.

PROOF. The lattice homomorphism ki : F([n])→ O

ki(x) =

{
> i ∈ x ,
⊥ otherwise.

is a change of basis, which “projects” the index tree σ on
ti by essentially ignoring all labels in a node of σ except
i, keeping one bit per node, indicating whether the node is
labeled with i. Theorem 5.3 applies, and thus we have

koi (Rσ[[q]]F([n])) = Rkoi (σ)[[q]]O.

Consider the function h : Vi → V defined by h(x) =
hi(x). From the assumptions we can prove that h is a sub-
homomorphism between ti and koi (σ). As a consequence we
have the inequalityRti [[q]]H ≤ HRkoi (τ)[[q]] = Hkoi (Rσ[[q]]).

Now suppose we have Rti [[q]][v, w] = >. Then we have
Rti [[q]]H[v, h(w)] = >, and so, using the inequality, that
HRkoi (σ)[[q]][v, h(w)] = >.
SoRkoi (σ)[[q]][h(v), h(w)] = >, and the conclusion follows,
using the definition of ki.

Theorem 4.3 is a consequence of Corollary 5.4: given ri
faithfully representing {ti | i ∈ [n]} in σ, one applies the
corollary to tm, σm, and the ri.

COROLLARY 5.5. Suppose that

1. (a) ∀v, w ∈ Vi, if v >−−i w then h(v)>−−x h(w), with
i ∈ x;

(b) ∀u ∈ V,w ∈ Vi, if u>−−x hi(w), with i ∈ x, then
v>−−iw for some v ∈ Vi with hi(v) = u,

2. ∀v ∈ Vi, labeli[v, a] iff i ∈ label[h(v), a].

Then for all queries q, we have:

Rti [[q]][v, w] = > ⇐⇒ i ∈ Rσ[[q]][hi(v), hi(w)] .

PROOF. With ki defined as previously, the assumptions
ensure h : ti → koi (σ) is a strong homomorphism.

We now show that the query semantics R is optimal: us-
ing a semantics which computes a “smaller” result will vio-
late soundness for some set of O-labeled trees. We define an
F([n])-valued semantics to be a function D associating an
F([n])-valued matrixDσ to any indexing tree σ. Such aD is
sound if Corollary 5.4 holds for it, i.e.: for any [n]-indexed
collection of O-labeled trees ti, and maps hi : Vti → Vσ ,
obeying the conditions of the corollary, the conclusion of
the corollary holds for D.

COROLLARY 5.6. R is the tightest sound F([n])-valued
semantics, i.e., for any sound semantics D, indexing tree σ
and v, w ∈ Vσ:

Rσ[[q]][v, w] ⊆ Dσ[[q]][v, w] .

PROOF. Choose an indexing tree σ. For i ∈ [n], let ti
be the projection of σ on i as defined in the proof of Corol-
lary 5.4, and let hi to be the identity on Vti . One can check
that ti, h′i, and σ satisfy the conditions of Corollary 5.5.

Now suppose that i0 ∈ Rσ[[q]][v, w], for v, w ∈ Vσ . Then,
by Corollary 5.5, Rti0 [[q]][v, w] = >. So, as D is sound, we
have i0 ∈ Dσ[[q]][v, w], as required.

6. QUERY MATCHING ALGORITHM
To analyze query complexity we assume that each lattice

operation can be performed in unit time. We also assume
that each node matcher nm denotes a mapN [[nm]] : Σ→ O
which can be computed in unit time. In the following, m is
the query size, m0 is the number of / and * operators in the
query, n is the number tree nodes, and h is the depth of the
index tree.

The semantics defined in Section 5 immediately gives us
a recursive method for computing the query result: for each
JPath query q we computeR[[q]] inductively according to the
structure of q. LetM1,M2 denote n×nmatrices and ~y an n-
dimensional vector. The computation involves the following
matrix operations, where ~y t denotes transposition:

M1∨M2 M1∧M2 M1M2 M1~y ~y tM1 ∆(~y) M∗ .

Among these operations the most expensive are multipli-
cation and Kleene star. All the other operations can be per-
formed in time O(n2). Matrix multiplication can be per-
formed in time O(n3), and M∗ can be evaluated, employing
O(log n) matrix multiplications and repeated squaring, by
computing (I ∨M)2

k

for k = 1, 2, . . . , dlog ne [3].
Our algorithm has running time O(mn2 + m0n

3 log n).
When the tree depth h is small we can use a sparse matrix
representation to reduce the running time. Because
R[[q]][u, v] 6=⊥ only if u is an ancestor of v, and each node
can have at most h ancestors, each column of R[[q]] has at
most h non-bottom elements. With a sparse matrix repre-
sentation the operation cost is:

M1 ∨∧M2 M1M2 M1~y ~y tM1 ∆(~y) M∗

O(nh) O(nh2) O(nh) O(nh) O(n) O(nh2 logn)

Total query matching time isO(mnh+m0nh
2 log n). When

h is small, as is typical in practice, the algorithm is approxi-
mately linear in n, the size of the tree. To summarize:

CLAIM 6.1. With the above notation R[[q]] can be com-
puted in time O(mnh+m0nh

2 log n).

The previous algorithm computes the complete matrixR[[q]]
for every pair of nodes. This is too much, since the final re-
sult is just the row of the matrix corresponding to the tree
root. This motivates the following “lazy” approach. Given
a “selector” vector y ∈ VecL(V) and a query q, define

9

A(q, y) =def (∆y)R[[q]]. A(q, y) only keeps the rows in
the matrix corresponding to non-bottom elements in y. The
indicator vector of a node w is δw ∈ VecL(V):

δw[v] =

{
> v = w
⊥ otherwise

Our goal is to compute A(q, δroot); this is done using the
recursive algorithm for A given in Figure 10. In the case of
a * operator, a matrix is squared dlog ne times.

A(nm, y) = (∆y)N [[nm]]
A(ε, y) = (∆y)
A(/, y) = (∆y)C

A(q1 | q2, y) = A(q1, y) ∨A(q2, y)
A(q1 & q2, y) = A(q1, y) ∧A(q2, y)

A(^q, y) = ∆(A(q, y)>V)
A(q1 q2, y) = A(q1, y)A(q2, A(q1, y)>V)
A(q*, y) = ((((∆y) ∨A(q, y))2)···)2

Figure 10: Matrix-based matching algorithm.

This method computes the same result as the matrix-based
algorithm, except that instead of evaluating the full matrix
R[[q]], it evaluates only the elements of the matrix that have
a bearing on the final result.

THEOREM 6.2. A(q, y) = (∆y)R[[q]].

PROOF. The proof is again by induction on the structure
of q. We show only the most involved case, for the se-
quence operator: A(q1 q2, y). First, notice that for any ma-
trix M we have M = M∆(M>V). First, for all u, v we
have M [u, v] ≤ ∨v′M [u, v′] and so M [u, v] ≤ (M>V)[u].
Hence M = M∆(M>V).

Next we calculate that

A(q1 q2, y)
= A(q1, y)A(q2, A(q1, y)>V)
= A(q1, y) ((∆A(q1, y)>V)R[[q2]]) definition of A
= (A(q1, y)(∆A(q1, y)>V))R[[q2]] associativity
= A(q1, y)R[[q2]] above observation
= (∆y)R[[q1]]R[[q2]] definition of A
= (∆y)R[[q]] .

The technique used by the “top-down” approach from [8]
to avoid useless context computations is similar to our lazy
algorithm, albeit the details are quite different.

In the worst case, the above algorithm runs in time
O(mn3 log n) and space O(mn2). Employing fast matrix
multiplication we can reduce the running time to O(mnω)
for ω ≈ 2.38. We can also design an O(2O(m)n log n)-
time algorithm based on automata, which may be suitable
when m � n. The classic membership problem for semi-
extended regular expressions (regular expressions with inter-
section operation) [23, 20] can be reduced to JPath queries.
The above bounds match, within a log n factor, the best known
running time of any algorithm for solving this problem.

7. EXPERIMENTS
We implemented the matrix based algorithm in Section 6

and ran it on a set of JSON logs produced by a search engine
(the code ran as part of the “mapper” part of a map-reduce-
like computation). The complete implementation takes a few
thousands of lines of C# code. Parallelization is trivial and
very effective by building a separate index for each partition
of the data.

Here we report the results of experiments performed on a
small log fragment, processed by a single machine — rep-
resentative of the work performed by one mapper. We run
our experiments on a 2.33GHz quad core 64-bit Intel Xeon
machine with 16G memory, running Windows Server 2008
R2, using a single enterprise-grade hard drive.

We used a sparse matrix representation for storing the
matching result, and followed the algorithm given in Sec-
tion 6 quite closely. We did not optimize the storing and
encoding of JSON objects for fast reading or parsing: they
are stored uncompressed in plain text format. The core im-
plementation is single-threaded and it neither parallelizes
computations nor tries hard to overlap I/O with computation
— other than the work performed by the operating system
buffer cache.

The JSON objects in the log were quite large, represent-
ing complex denormalized relations merged from a number
of sources where each source conforms to a small set of dif-
ferent schemas. The average JSON object was 40KBytes,
containing 4000 nodes. The average depth of objects was
about 20, and most nodes have up to 10 children. We used a
1.6GB log (about 40K objects). We segmented the log into a
small number of pieces or roughly equal size; we varied the
piece size from 200MB to the whole 1.6GB, and we built a
separate index tree for each piece.

We varied the indexing policies, trying different thresh-
olds before merging nodes (e.g., a threshold of 50 means that
an index tree node with less than 50 children will keep all of
them, but one with more than 50 will represent all of them
as a single node with a star label). Table 1 shows the various
costs incurred by the index tree (averaged over all pieces; the
variance is small in all cases). The indexing build time and
the final index tree size is determined by the data size and
is largely independent of the merging threshold, so we only
show the averages for all thresholds; both are linear in the
input data size. The size of the index tree does depend on
the merging threshold, but in all cases the index tree itself is
small. The size of the entire index tree grows linearly with
the size of data due to the inverted indexes, but it is always
less than 8% of the data size. The inverted indexes require
most overhead, but are very compressible.

To evaluate performance we used four analytical queries
obtained from production jobs running on our data-sets (the
dataset is immutable during query processing). These queries
vary according to their query complexity and query selectiv-
ity (highly selective queries return few results). They are
shown in Table 2 (we removed the quotes for better read-

10

data size (MB) 200 400 800 1600
ave. build time (second) 91 200 406 831
ave. index tree size (MB) 15 30 57 111
ave. nodes (th=50) 5376 5690 6233 4550
ave. nodes (th=100) 10646 11054 12934 13723
ave. nodes (th=150) 15677 16948 18621 17618

Table 1: Indexing cost. The number of nodes in the in-
dex tree varies with the node merging threshold, but the
indexing time and index tree size do not. The number
of nodes is shown for 3 different merging thresholds: 50,
100, 150.

ability). A low complexity query extracts the value of an
attribute close to the root while a high complexity query re-
trieves the value deep in the object and according to many
matching criteria. The “selectivity” column indicates the
percentage of objects matching each query.

We ran all queries on the full dataset, summing up the
times for all pieces, so all the times can be compared (since
they process the same amount of data). Figure 11 shows
the breakdown of query time into four parts, starting from
the bottom: time to read and query the index tree; I/O time
to read the JSON trees returned by the index tree; time to
parse these JSON trees; and time to run the query on these
trees. A threshold of 0 indicates that no index tree is used at
all, the query is just run directly on all trees. As expected,
the more selective the queries, the better the speed-up from
using index trees. On the other hand, non-selective queries
are not significantly slowed-down.

Based on the experimental results, we make the following
observations:
(1) The overhead of consulting the index tree, shown by the
bottom bar, is small. Even for a non-selective query (q1)
very little is added to the total query time.
(2) Indexing is effective for selective queries (q3, q4) even
with a moderate merging threshold. For q3, with a merging
threshold of 100 provides 2 orders of magnitude speedup.
(3) As the size of a partition grows, more false positives
are returned for low merging thresholds. E.g., for q4 with
a threshold of 150, the speedup for 200M size partitions is
much better than 1600M size partitions.
(4) Indexing overhead (both space and index tree query time)
is slightly better amortized over large partitions.
(5) The time to parse JSON objects always dominates, but
complex queries (q2, q4) can incur significant matching costs
(top bar). So even eliminating reading and parsing time, in-
dexing still significantly speeds up queries such as q4.

8. JPATH AND OTHER TREE QUERY LAN-
GUAGES

Our approach of defining a core language is similar to
work on supporting subsets of XQuery/XPath [8, 1, 24, 25,
19, 14]. Particularly relevant is the work on Core XPath and
its relatives [7, 8, 13, 1]. Core XPath is both similar to and
different from JPath. Our queries and nodematchers corre-

spond to XPath locpath and Boolean expressions, which are,
respectively, binary and unary queries. We do not have the
root predicate or the parent, following, or preceding axes.
We also do not have Boolean combinations of nodematch-
ers, but, apart from negation, we provide Boolean opera-
tions on queries. Conjunction on binary queries is an impor-
tant difference from core XPath and impinges on complex-
ity; the extent to which general conjunction is useful seems
to be a practical one whose answer requires further experi-
ence. We replace the mutual dependence between locpaths
and Boolean expressions by the snap operator. A pragmatic
difference is our focus on binary rather than unary queries.
(see the cut operator in Appendix A).

As one would expect, there are connections between JPath
and logic over labeled trees [13, 9, 2]. For example, if one
takes JPath less Kleene star, but adding the descendant re-
lation (defined in JPath by /*) then one obtains a language
with the same expressive power as binary positive queries
over trees with a child and descendant relation and predi-
cates for each nodematcher, with the evident interpretation
over labeled trees.

JSON has been adopted as the data model in many NoSQL
databases [4, 18, 22, 17]. Such systems store large semi-
structured data sets using JSON (and other tree-like formats
[15]). These systems all provide different JSON-oriented
query languages, sometimes by offering JSON column types
for relational tables. JPath has been designed from the outset
for simplicity, orthogonality of its operators, and efficient
implementation and indexing.

9. SUMMARY
We have presented JPath, a structural query language for

JSON documents. We have also introduced a method for
indexing JSON data stores which enables fast query exe-
cutions on whole collections of documents in a single run.
We have argued about the correctness of our algorithms and
about the complexity of their implementations. We have
also provided a mathematical treatment which unifies query
processing on documents and index trees using operations
on matrices with lattice-valued elements; we find that lat-
tices provide a natural vehicle for reasoning about approxi-
mations. We believe that this unified treatment sheds some
interesting new light on approximating data structures, of
which our index trees are an instance.

Interestingly, none of the proofs of our theorems depend
on the fact that the documents are tree shaped (but some al-
gorithms and the implementation are designed for handling
trees); the theory could as well be applied to documents
structured as graphs (acyclic or cyclic). We have not ex-
ploited the full generality of our formalism in our implemen-
tations, so there is potential for some interesting develop-
ments: e.g., applying JPath to graph-shaped data structures,
using strong homomorphisms to obtain exact results, using
additional degrees of freedom, such as maintaining one in-
verted index for each label, or using more complex lattices.

11

Id Complexity Selectivity JPath Query
q1 low low (100%) /ClientId/
q2 high medium (16%) /Events/(^/T/Event.Impression)/DS/(^/T/D.Top.WebSet)/DS/(^/T/D.WebSet)

/DS/(^/T/D.Web)/DS/((^/T/D.Url)&(^/N/Title))/K/
q3 medium high (0.03%) ^(/Events//Page/Name/Page.History)/ClientId/
q4 high high (0.02%) /Events/(^/T/Event.Impression)/DS/(^/T/D.Top.WebSet)/DS/(^/T/D.WebSet)

/DS/((^/T/D.Web)&(^/TitleMap/13))/DS/((^/T/D.Url)&(^/N/Title))/K/

Table 2: Queries used in the experiments.

0

20

40

60

80

100

120

140

160

0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0 0 50 10
0

15
0

200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600

q1 q2 q3 q4

Sum of matchtime

Sum of parsetime

Sum of readtime

Sum of checkindextime

threshold

filesize

query

query documents
parse documents
read matched docs
read and query index

Figure 11: Query execution time (seconds) breakdown as a function of query selectivity, partition size and indexing
policy. Lower is better. “Threshold” is the node merging threshold; 0 = no index used at all.

10. REFERENCES
[1] M. Benedikt and C. Koch. XPath leashed. ACM

Comput. Surv., 41(1), 2008.
[2] F. Bry, T. Furche, B. Linse, et al. Efficient evaluation

of n-ary conjunctive queries over trees and graphs. In
WIDM, pages 11–18, 2006.

[3] K. Cechlarova. Powers of matrices over distributive
lattices – a review. Fuzzy Sets and Systems,
138(3):627–641, 2003.

[4] CouchDB. http://couchdb.apache.org.
[5] Y. Give´on. Lattice matrices. Information and Control,

7(4):477–484, December 1964.
[6] R. Goldman and J. Widom. DataGuides: enabling

query formulation and optimization in semistructrured
databases. In VLDB, pages 436–445, 1997.

[7] G. Gottlob, C. Koch, and R. Pichler. The complexity
of XPath query evaluation. In F. Neven, C. Beeri, and
T. Milo, editors, PODS, pages 179–190. ACM, 2003.

[8] G. Gottlob, C. Koch, and R. Pichler. Efficient
algorithms for processing XPath queries. ACM Trans.
Database Syst., 30(2):444–491, 2005.

[9] G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive
queries over trees. J. ACM, 53(2):238–272, 2006.

[10] G. Gou and R. Chirkova. Efficiently querying large
XML data repositories: A survey. IEEE Trans. Knowl.
Data Eng., 19(10):1381–1403, 2007.

[11] Json. Javascript object notation (JSON).
http://www.json.org/, 2012.

[12] R. Kaushik, P. Bohannon, J. F. Naughton, et al.
Covering indexes for branching path queries. In M. J.
Franklin, B. Moon, and A. Ailamaki, editors,
SIGMOD Conference, pages 133–144. ACM, 2002.

[13] C. Koch. Processing queries on tree-structured data
efficiently. In PODS, pages 213–224, 2006.

[14] L. Libkin. Logics for unranked trees: An overview.
Logical Methods in Computer Science, 2(3), 2006.

[15] S. Melnik, A. Gubarev, J. J. Long, et al. Dremel:
Interactive analysis of web-scale datasets. PVLDB,
3(1):330–339, 2010.

[16] T. Milo and D. Suciu. Index structures for path
expressions. In ICDT, pages 277–295, 1999.

[17] MonetDB. http://www.monetdb.org.
[18] MongoDB. http://www.mongodb.org.
[19] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, et al. Tree

logical classes for efficient evaluation of XQuery. In
SIGMOD Conference, pages 71–82, 2004.

[20] H. Petersen. The membership problem for regular
expressions with intersection is complete in logcfl. In
STACS, pages 513–522, 2002.

[21] P. Ramanan. Covering indexes for xml queries:
Bisimulation - simulation = negation. In VLDB, pages
165–176, 2003.

12

[22] riak. http://wiki.basho.com.
[23] G. Rosu. An effective algorithm for the membership

problem for extended regular expressions. In
FoSSaCS, pages 332–345, 2007.

[24] Y. Wu, M. Gyssens, and J. Paredaens. A study of
positive XPath with parent/child navigation. In
Principles of Database Systems (PODS), Vancouver,
CA, 2008.

[25] Y. Wu, D. Van Gucht, M. Gyssens, et al. A study of a
positive fragment of path queries: Expressiveness,
normal form and minimization. The Computer
Journal, 2010.

APPENDIX
A. PRACTICAL CONSIDERATIONS

In order to make our presentation more readable we have
made some simplifying assumptions in the formalism. While
building several implementations of these algorithms we have
had to tackle additional issues, some of which are briefly ad-
dressed in this appendix.

Handling arbitrary JSON base types
So far we have only considered string matching for node

labels. The only query operator which looks at the node la-
bels is the nodematcher. In our implementations we have
found it useful to add (typed and untyped) families of node-
matchers to handle all legal JSON data types: strings, dou-
bles, Booleans and null values.

We have also added type-checking nodematchers such as
IsString, IsBoolean, IsNumericwhich return ‘true’ only
if the checked node label has the proper type, and also IsArray,
IsObject and IsLeaf nodematchers. The query matching
algorithm remains unchanged, as it only depends on the re-
sults produced by nodematchers, which are still lattice val-
ues.

Writing complex nodematchers
As we said in Section 3, nodematchers can be used to

perform more complex computations on node labels (not
just testing for equality). In fact, one can use any predicate
on node labels, including regular expressions, arithmetic or
string manipulations. These changes have no consequences
for the query matching algorithm.

JavaScript is a natural language choice for writing node-
matchers. Nodematchers can be written as anonymous JavaScript
functions taking a single argument, the node label, and re-
turning a Boolean value.

Here are some possible examples of useful nodematcher
functions, written in JavaScript:

• function(label){label == "price";}— matches ex-
actly the price label.
• function(label){label.length == 5;} — matches
all labels with length 5
• function(label){label.indexOf("price") >= 0;}
— matches all labels that contain the price sub-string
• function(label){label % 2 == 0;} — matches all
even numeric labels.
• function(label){label.test(/^[A-Za-z0-9]+$/);}
— matches all alphanumeric labels.

The syntax for writing such nodematchers we have cho-
sen in our implementation requires supplying the JavaScript
code in a properly quoted string, which unfortunately re-
quires escaping the nested quotes. Here is an example query
consisting of just one nodematcher:
JavaScript("function(l) { l == \"price\"; }")

Running arbitrary user-supplied code as part of the query
execution on the server side is a difficult problem, which we

13

do not address in this document; JavaScript sandboxing of-
fers security, and timers are used to abort long-running com-
putations.

The “cut” operator
The query language presented so far only computes one

bit per document, returning the whole document if it matches
the query, or nothing if it does not. The queries may perform
a lot of work to discover the document structure, but this
information is lost. We have extended our query language
with an additional operator called “cut”, denoted by !, which
allows efficient extraction of document fragments.

For example, we would like to extract the "city"’s of the
"exports" fields of the two objects in Example 1. User
queries must always contain exactly one cut operator:

userquery = query!query.

While matching a query on a tree or index tree t the cut
operator is treated like a child operator /. However, after
matching has been performed, the cut operator executed on
a document tree is used to prune t, generating a set of its
subtrees.

Let us consider the query q = q1!q2 applied to a tree t.
Suppose that Tt [[q1]] = {u1, . . . , uk}, and that for each ui
we have Tt [[q2, ui]] = {vi1, vi2, . . . , vim}. The result re-
turned to the user after running q on t is the set T ′ of proper
sub-trees of t rooted at some ui and spanning all the nodes in
Tt [[q2, ui]], all the way down to the leaves. Figure 12 depicts
the cut operation. Note that the trees in T ′ overlap with each
other, if some of the u nodes are descendants of others.

root

q1 matches

q2 matches

Result of q1!q2

Figure 12: The “cut” operator: the results of the query
q1!q2 are the sub-trees of t rooted at the results of q1
spanned by the nodes matched by q1/q2.

To solve the problem posed above, of extracting just the
citys, we would write the following query:
/"exports"/?!"city". The result of this query is the fol-
lowing set of documents: {"city":"Moscow"},
{"city":"Athens"}, {"city":"Berlin"}, and
{"city":"Amsterdam"}. Notice that the result does not
contain the node "dealers" and its children from the sec-
ond document, because it is not spanned by the "city" sub-
query.

Recall from Section 2 that we eliminate arrays by trans-
forming them into objects. If an array is entirely returned as
part of the result, we perform the reverse conversion before
returning the result to the user. E.g., the result of the query
^(/"headquarters"/"Belgium")/"location"/!() is an

array:

[{ "country": "Germany", "city": "Berlin" },

{ "country": "France", "city": "Paris" }]

However, the result of the query
^(/"headquarters"/"Belgium")/"location"!1 is

{ "1":{ "country":"France", "city":"Paris" }}

Because the latter query only returns a fragment of the
array, the result is converted to an object, the label 1 being
converted to a string to obtain a correct JavaScript object.

Lazy lattice computations
The algorithm in Section 6 performs a computation on

matrices with lattice values for each kind of query construc-
tor; query evaluation turns into matrix computations. The
matrix computation should be performed lazily: instead of
performing matrix operations right away, the algorithm builds
an expression tree describing the lattice computations to be
performed. Optimizations can be performed on this tree
(e.g., common sub-expression elimination), and the expres-
sion is evaluated only after the complete query has been ex-
ecuted on an index tree. The evaluation of the expression
takes advantage of lattice properties to avoid unnecessary
computations. For example, as⊥∧e = ⊥, we do not need to
compute the value of e at all. The lazy lattice computations
are orthogonal to the lazy computation of matrix elements
from Section 6, and can be used in combination.

Mutable databases
The discussion so far did not address the issue of dynamic

index maintenance when documents are inserted or deleted
from the database. One of our implementations incremen-
tally updates the index when deletions, insertions and up-
dates occur in the database. The cost of incremental index
updates is significant, e.g., the number of inverted indexes
updated is proportional to the number of nodes in an inserted
tree. We use several techniques to amortize the cost of up-
dates:

• We treat deletions lazily, by marking documents deleted,
and not updating the index. A background garbage-
collection process trims the unneeded nodes.

• We batch insertions, by inserting multiple documents in
a single traversal of the index. This means that the new
documents are inserted into the index without any node
merging, and that merging is performed only periodi-
cally.

• We split the index into a set of disjoint index sub-trees,
each tree handing a subset of the documents; the com-
plete index is the union of these sub-trees. We maintain
the invariant that all insertions are performed in the last
tree only. This makes the first n-1 trees read-only (in
fact, delete-only). Queries are run against all the sub-
trees, and the complete result is the union of the results.
The last tree grows until it reaches a maximum size, at

14

which point it is “sealed”, and a new final tree is cre-
ated.

Paginated queries
Some queries can return a large number of results; since it

is not practical to return an arbitrary number of documents in
a single service request, in practice query execution is pag-
inated: the execution of a query returns a set of documents
and an opaque continuation token. A subsequent query that
supplies the continuation token will continue returning ad-
ditional results starting where the first query left off. (The
token encodes the state of a server-side iterator over query
results.)

Paginated queries may conflict with concurrent updates,
performed while the query is executing. The semantics of
our query execution guarantees that all documents that are
not mutated (inserted/deleted) while the query runs will be
matched during the query execution; the result is unspecified
for documents that are updated concurrently with the query
execution.

The design described using a index composed of multi-
ple index trees, is quite suitable for handling the problem of
concurrent updates as well. The query is run starting from
the last index tree (the only one mutable), going towards the
first index tree. The first n-1 index trees are essentially read-
only, so running the query on them creates no conflicts with
updates.

B. ALGORITHM BUILDTREE

This recursive algorithm in Figure 13 translates a JSON
document in its tree representation. The algorithm is invoked
with BUILDTREE(jsonTree, empty).

C. QUERY EXAMPLES
Here are the results of applying some queries to a doc-

ument collection containing the two documents from Fig-
ure 1.

• Query: /"exports"//"city"/
Results: "Moscow", "Athens", "Berlin", "Amsterdam"
Explanation: "exports" is a constant-string nodematcher,
which only matches nodes labeled with the string exports.
The / operator is used to extract the children of a node.
• Query: (/*)/"country"
Results: {"country":"Germany"}, {"country":"France"},
{"country":"Germany"}
Explanation: The star operator is used to traverse the trees
to an arbitrary depth to discover all "country" labels. Within
the set of three results, there are two which are identical, the
first coming from the first document, and the third coming
from the second document.
• Query: (^/"location"/"country"/"France")

/"headquarters"/

Results: "Belgium"
Explanation: The query finds all documents which have

function BUILDTREE(ParseTree jsonDoc, BaseValue
rootLabel)

if jsonDoc is basevalue then
parent = new Node

parent.type = NodeTypeLeafParent
label(parent) = rootLabel
child = new Node

child.type = NodeTypeLeaf
label(child) = jsonDoc
parent.children.Add(child)

else if jsonDoc is object then
parent = new Node

parent.type = NodeTypeObject
label(parent) = rootLabel
for all pair in jsonDoc.keyValuePairs do

child = BUILDTREE(pair.value, pair.label)
parent.children.Add(child)

end for
else if jsonDoc is array then

parent = new Node

parent.type = NodeTypeArray
label(parent) = rootLabel
for i=0..(jsonDoc.elements.Length-1) do

child = BUILDTREE(jsonDoc.elements[i], i)
parent.children.Add(child)

end for
end if
return parent

end function

Figure 13: Algorithm for transforming a JSON docu-
ment to a labeled tree.

"location" with a "France" "country", then inquires
about their "headquarters". The ^ operator is used to re-
turn back in the JSON tree to the node that had the children;
the /"headquarters" part of the query is applied at that
point.
• Query: (^/"location"/((^"country"/"France") &

("country"/"Germany")))/"headquarters"

Results: {"headquarters":"Belgium"}
Explanation: Finds the "headquarters" of all documents
who have "location" in both "France" and "Germany".
The & operator is used to perform a conjunction, and the ^

is used twice: the first instance to return to the parent of the
node labeled "location" to search for the "headquarters",
and the second instance is used to ensure that the path
"country"/"Germany" is sought at the same node where
the path "country"/"France" had matched.

D. PROOF OF THEOREM 4.1
Let us fix t = ti and v ∈ V (t). The proof by induction on

the structure of the query is shown in Figure 14.

E. PROOF OF THEOREM 5.1

15

q = nm Follows from the label consistency condition.
q = ε Obvious.
q = / Follows from the child consistency condition.

q = q1 q2

M(T [[q, v]])
= M(∪u∈T [[q1,v]]T [[q2, u]]) def
= ∪u∈T [[q1,v]]M(T [[q2, u]])
⊆ ∪u∈T [[q1,v]]I [[q2,M(u)]] IH
⊆ ∪u′∈I [[q1,M(v)]]I [[q2,M(u′)]] IH
= I [[q,M(v)]] def

q = q1 | q2 From IH and monotonicity of set union.
q = q1 & q2 From IH and monotonicity of set intersection.
q = q1*: We just need to prove that for any k-

bounded approximation of the query result:
∪0≤n≤kT [[qn1 , v]] this property holds, where
k ≤ |V (σ)|. The case k = 0 is the same as the
case for q = ε above. For k = 1 the statement
follows from the induction hypothesis. Given
a proof for k we can prove the statement for
k+1 using the sequence operator proof above,
and the fact that union is monotone.

q = ^q1 We have two cases:
• T [[q1, v]] = ∅. The result is trivial, since
M(T [[q, v]]) = ∅.
• T [[q1, v]] 6= ∅. By the induction hypothesis,
M(T [[q1, v]]) ⊆ I [[q1,M(v)]]. Thus we must
have that I [[^q1,M(v)]] = I [[q,M(v)]] =
M(v), by the definition of the ^ operator. But,
for the ^ operator, T [[q, v]] ⊆ {v}, and thus,
applying M on both sides, M(T [[q, v]]) ⊆
M(v) = I [[q,M(v)]].

Figure 14: Proof of Theorem 4.1.

LEMMA E.1. For any ~y ∈ VecL(V ′), and for any matrix
H ∈ MatL(V, V ′) corresponding to a subhomomorphism
h we have:

∆(H~y)H = H∆(~y)

PROOF. A simple calculation.

The proof of Theorem 5.1 is also by induction on the
structure of q, shown in Figure 15.

Rτ [[nm]]H = ∆(label[[nm]])H
≤ ∆(Hlabel′[[nm]])H (label consistency)
= H∆(label′[[nm]]) (by Lemma E.1)
= HRτ ′ [[nm]]

Rτ [[ε]]H = IVH
= HIV ′

= HRτ ′ [[ε]]

Rτ [[/]]H = CH
≤ HC ′ (child consistency)
= HRτ ′ [[/]]

Rτ [[q1q2]]H = Rτ [[q2]]Rτ [[q1]]H
≤ Rτ [[q2]]HRτ ′ [[q1]] (by IH)
≤ HRτ ′ [[q2]]Rτ ′ [[q1]] (by IH)
= HRτ ′ [[q1q2]]

Rτ [[^q]]H = ∆(Rτ [[q]]>V)H
= ∆(Rτ [[q]]H>V ′)H
≤ ∆(HRτ ′ [[q]]>V ′)H (IH)
= H∆(Rτ ′ [[q]]>V ′) (by Lemma E.1)
= HRτ ′ [[^q]]

Rτ [[q1 | q2]]H = (Rτ [[q1]] ∨Rτ [[q2]])H
= Rτ [[q1]]H ∨Rτ [[q2]]H
≤ HRτ ′ [[q1]] ∨HRτ ′ [[q2]] (IH)
= H(Rτ ′ [[q1]] ∨Rτ ′ [[q2]])
= HRτ ′ [[q1 | q2]]

Rτ [[q1 & q2]]H = (Rτ [[q1]] ∧Rτ [[q2]])H
= Rτ [[q1]]H ∧Rτ [[q2]]H (H is function matrix)
≤ HRτ ′ [[q1]] ∧HRτ ′ [[q2]] (IH)
= HRτ ′ [[q1 & q2]] (H is function matrix)

Rτ [[q*]]H = (
∨
n≥0Rτ [[q]]n)H

=
∨
n≥0Rτ [[q]]nH

≤
∨
n≥0HRτ ′ [[q]]n (IH)

= H(
∨
n≥0Rτ ′ [[q]]n)

= HRτ ′ [[q*]]

Figure 15: Proof of Theorem 5.1.

16

