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Abstract—We introduce DryadOpt, a library that enables
massively parallel and distributed execution of optimization
algorithms for solving hard problems. DryadOpt performs an
exhaustive search of the solution space using branch-and-bound,
by recursively splitting the original problem into many simpler
subproblems. It uses both parallelism (at the core level) and
distributed execution (at the machine level). DryadOpt provides
a simple yet powerful interface to its users, who only need to
implement sequential code to process individual subproblems
(either by solving them in full or generating new subproblems).
The parallelism and distribution are handled automatically by
DryadOpt, and are invisible to the user. The distinctive feature
of our system is that it is implemented on top of DryadLINQ,
a distributed data-parallel execution engine similar to Hadoop
and Map-Reduce. Despite the fact that these engines offer a
constrained application model, with restricted communication
patterns, our experiments show that careful design choices allow
DryadOpt to scale linearly with the number of machines, with
very little overhead.

Keywords-combinatorial optimization; branch-and-bound; dis-
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I. INTRODUCTION

Distributed data-parallel execution engines (DDPEE) such
as Dryad [1], MapReduce [2], and Hadoop [3] have become
widely popular recently, in both theory [4] and practice [5],
[6]. A DDPEE provides a restricted computation model that
composes in parallel many completely independent sequential
computations. The simple programming model and broad
availability (particularly with the Hadoop open-source imple-
mentation) have caused worldwide adoption of such engines.
While exploiting parallelism using DDPEEs is easy, they
impose some important restrictions on the algorithms that can
be implemented efficiently. Algorithms mapped on DDPEEs
need to process a large number of independent data items,
grouped in relatively large batches (partitions or shards),
with a relatively uniform execution time per batch. These
restrictions are a consequence of the limited communication
model: processes run in separate isolated address spaces for
their complete lifetime, and data exchanges can occur only
when a round of processes terminates and a new one starts.
The use of large data batches is required to amortize the expen-
sive cost of communication and process creation/destruction.
These restrictions make it hard to solve general optimization
problems on a DDPEE.

A well-known approach to solving large (NP-hard) opti-
mization problems is based on traversing branch-and-bound
trees [7]. The root of the tree is the original problem, and
the other nodes represent subproblems to be solved. The total
number of nodes can be exponential in the problem size in
the worst case. In practice, algorithms attempt to prove that
certain branches of the tree cannot possibly contain the optimal
solution, and can therefore be pruned without being visited
explicitly. Even so, small input problems can lead to huge
search trees. Distributed execution using a computer cluster is
an obvious strategy to reduce running times, as evidenced by
the wealth of different parallel and distributed solvers proposed
over the years [8]–[22]. All these solvers are based on parallel
computation frameworks that are more flexible than DDPEEs.

This paper introduces DryadOpt, a library for the auto-
matic distributed execution of branch-and-bound algorithms
on large clusters. Its unique feature is that it runs on top of
the Dryad/DryadLINQ framework. We show how we lever-
age the Dryad platform despite its restrictive computation
model. In particular, we adapt the impedance of the platform
entirely at the application level (i.e., without changing the
cluster infrastructure or compiler) to match the specific needs
of our algorithm: data-parallel tree-traversal, load balancing,
coordination, handling nondeterminism, and reexecution for
reliability. We obtain speedups that scale linearly with the
number of machines, and achieve excellent cluster utilization
even when running on multiprogrammed clusters offering
unpredictable resources (i.e., dynamically variable number of
available machines).

DryadOpt is a library that user programs can link against.
A key feature of DryadOpt is that it factors out the code
responsible for distribution and parallelism, making both com-
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Fig. 1. Modular software architecture for solving branch-and-bound opti-
mization problems.



pletely transparent to the user. It does so by a modular software
architecture (shown in Figure 1), which can actually be used to
implement generic branch-and-bound solvers. Our target users
are expert developers in traditional sequential algorithms, but
who have no expertise in writing parallel code.

To serve as a running example in this paper, we imple-
mented a branch-and-bound solver for the NP-hard Steiner
problem in graphs. The input to the Steiner problem is
an undirected graph G = (V,E) with positive edge costs,
together with a set T ⊆ V of terminals. The goal is to find
the lowest-cost subgraph of G containing all terminals. The
solution is a tree, and it may contain so-called Steiner vertices
(i.e., vertices in V \T ), as illustrated in Figure 2. Although the
Steiner vertices do not have to be part of the solution, inserting
them may allow terminals to be connected more cheaply.

Fig. 2. An instance of the Steiner problem. Circles represent standard vertices
and squares represent terminals. The highlighted tree is a possible solution to
this instance.

Several techniques for solving this problem have been pub-
lished, including heuristics, exact algorithms, and logic-based
reduction techniques. For comprehensive overviews of some
of the best existing algorithms, see [23], [24]. In particular, for
a wide class of unstructured instances, the best-known solution
method is branch-and-bound [23]–[25].

We emphasize that the DryadOpt library is not specific to
the Steiner problem, and we have used it to implement other
branch-and-bound algorithms; we report results for the Steiner
problem in this paper for concreteness only.

This paper is organized as follows. In Section II we review
the branch-and-bound approach in more detail, while Sec-
tion III describes the Dryad/DryadLINQ framework. A high-
level description of DryadOpt is given in Section IV. The
solver interface API is presented in Section V, and details
of the DryadOpt engine implementation are provided in Sec-
tion VI. We support our claims of efficiency by demonstrating
linear speedup using up to 512 cores in the experimental
evaluation in Section VII. Finally, we conclude our work with
lessons learned in Section VIII.

II. BRANCH-AND-BOUND

Branch-and-bound [7] is a universal and well-known algo-
rithmic technique to solve optimization problems. In a nut-
shell, it interprets the input problem as the root of a search tree.
Then, two basic operations are recursively executed: branch
the problem (node) into several smaller (easier) problems or
bound (prune) the search tree. The bounding can happen due
to two reasons. Either the problem has become easy enough to

be directly solved or one can prove that this node, and hence
its descendants, cannot contribute to the optimal solution. Note
that branch-and-bound is a framework, and that most of the
algorithmic challenges are hidden in the pruning and solving
mechanism, which are problem-specific.

Without loss of generality, in the remainder of this paper
we assume we are dealing with a minimization problem. At
all times, the algorithm maintains the best (minimum) known
feasible solution (the incumbent) to the problem. In addition,
each node of the branch-and-bound tree computes its own
lower bound. If the lower bound of a subproblem is not
lower than the incumbent solution, the algorithm will fathom
(discard) the node, thus pruning the search tree. Figure 3 shows
an example search tree.
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Fig. 3. The frontier is a cut in the search tree separating the completed nodes
from the not-yet-explored nodes.

A. The Steiner Problem

A branch-and-bound algorithm for the Steiner problem is
conceptually simple. Each subproblem can be defined as a
triple Pi = (Vi, Ei, Ti) representing a graph with vertex set Vi,
edge set Ei, and a set of terminals Ti ⊆ Vi. If the subproblem
is not easy enough to be fully solved, we split it into two or
more subproblems with disjoint solution spaces.

A natural approach to doing so is to branch on vertices.
We can use a fixed nonterminal v ∈ Vi \ Ti to divide Pi into
two subproblems. The first contains all solutions that include
v, which we can achieve by setting P+

i = (Vi, Ei, Ti ∪ {v}).
The second subproblem contains all solutions that exclude v:
we set P−i = (Vi \ {v}, Ei \ Ev

i , Ti), where Ev
i is the set of

edges in Ei having v as an endpoint.
Our sequential algorithm uses a combination of construc-

tive algorithms and local searches [26] to compute upper
bounds. For lower bounds, we use a greedy combinatorial
algorithm to find dual-feasible solutions to a directed-cut-
based linear programming formulation of the problem. This
dual ascent algorithm [27] has been shown to find extremely
good solutions at a fraction of the running time of a linear-
programming solver [24], [25]. The sequential solver is by far
the most complicated part of the implementation: it has 13
KLOC, compared to about 4 KLOC for the DryadOpt engine
itself. It is thus quite remarkable that DryadOpt can create a



highly efficient parallel implementation using the sequential
algorithm essentially as a black box.

B. Distributed Branch-and-Bound

At any point during the search tree traversal, the search
frontier, i.e., all open subproblems, can be processed indepen-
dently. The only shared resource is the incumbent. Hence, pro-
cessing the search tree in distributed fashion is very natural and
has been studied for decades [28], [29]. The main challenge
for such frameworks is to keep all computational resources
busy. At a glance, this seems trivial: one could simply keep
generating and distributing subproblems until each machine
has exactly one subproblem, which is then solved sequentially.
This approach fails in practice because search trees often are
highly unbalanced, even exponentially so. Hence, all recent
approaches [8]–[22] rely either on work stealing (a machine
can ask other machines for new subproblems in case it runs
dry) or on a central scheduler. Since a DDPEE does not
support inter-machine communication, these approaches are
not feasible in our setting.

III. DRYAD AND DRYADLINQ

We have built DryadOpt on top of a distributed computation
framework for large clusters. The software stack that we use
is shown in Figure 4. In this section we focus on two layers
in the stack: Dryad and DryadLINQ.

1 

Windows 
Server 

Cluster services 

Cluster storage 

Dryad 

DryadLINQ 

Windows 
Server 

Windows 
Server 

Windows 
Server 

DryadOpt library 

Optimization problem 

Fig. 4. DryadOpt software stack.

A. Dryad

Dryad [1] is a software layer that coordinates the execution
of multiple dependent programs (processes) running on a
computer cluster. A Dryad job is a collection of processes
that communicate with one another through unidirectional
channels. Each Dryad job is a directed acyclic multigraph,
in which nodes represent processes and edges represent com-
munication channels. Requiring the graphs to be acyclic may
seem restrictive, but it enables Dryad to provide fault-tolerance
automatically, without any knowledge of the application se-
mantics. Figure 5 shows a hypothetical example of a Dryad
job graph.

Dryad handles the reliable execution of the graph on a
cluster. Dryad schedules computations to computers, monitors
their execution, collects and reports statistics, and handles

Fig. 5. Example of a hypothetical Dryad job graph; the nodes represent
programs that execute, possibly on different computers, while the edges are
channels transporting data between the processes. The input and output of the
computation reside on the cluster storage medium.

transient failures in the cluster by reexecuting failed or slow
computations. Dryad jobs execute in a shared-nothing envi-
ronment: there is no shared memory or disk state between
the various processes in a Dryad job; vertices cannot open
network connections to each other; the only communication
medium between processes are the channels.

B. DryadLINQ

DryadLINQ [6] is a compiler which translates LINQ .Net
computations into Dryad job graphs that can be executed on
a cluster by Dryad. LINQ is essentially a set of operators
that perform computations on collections of values; the LINQ
language is similar to the SQL database language, and the
LINQ collections are the equivalent of database tables; unlike
SQL, LINQ is “embedded” within the other .Net languages
(i.e., there are LINQ operators for C#, VB, F#). The essential
LINQ operations are: apply a transformation (function) to
all elements in a collection, filter elements according to a
predicate, group elements by a common key, aggregate the
elements according to some function (e.g., addition), and
join the elements in two collections using a common key.
DryadLINQ collections are partitioned, with different parts
residing on different machines, as shown in Figure 6. For the
programmer the main benefit of using DryadLINQ is that of
using a single high-level programming language (.Net) to write
the application, blending seamlessly the local and distributed
parts of the computation in a single program, due to the tight
embedding of LINQ in .Net languages.

Partition

Collection

.NET objects

Fig. 6. DryadLINQ data model: collections of typed values partitioned among
several computers.

In general, the collection elements must be moved between
computers during the computation, so the in-memory data
structures need to be serialized to a shared physical medium,
either a disk or the network. DryadLINQ automatically gen-



erates serialization and de-serialization code, but the user can
replace the default serialization routines with custom ones.

Not only does DryadLINQ generate job graphs, but it can
also generate parallel multi-threaded code for each of the pro-
cesses in a job graph, using multiple cores. The parallelization
across cores uses very similar techniques to the distribution
across machines, noting that each partition of a collection is
just a smaller collection itself. DryadLINQ translates LINQ
operations on the large collections into LINQ operators on
individual partitions, which are further partitioned across cores
and processed in parallel.

DryadLINQ provides a generalization of the popular Map-
Reduce computation model, implemented in the Google pro-
prietary stack [2] and the open-source Hadoop stack [3]. A
map-reduce computation is just a particular sequence of LINQ
operators (SelectMany/GroupBy/Aggregate).

IV. DRYADOPT OVERVIEW

In this section we outline the strategy used by DryadOpt
for parallelizing the exploration of a search tree.

The entire execution is orchestrated by the user’s machine
(the client workstation), which coordinates the execution of
many rounds of computation on the cluster by launching
multiple DryadLINQ computations.

Initially the client workstation reads the problem instance.
This is now a search tree with a single (root) element. The
client workstation then repeatedly runs the sequential solver
locally, in an attempt to generate a large frontier, to provide
enough work for the cluster machines.

This frontier becomes the inductive basis for the algorithm,
which proceeds in rounds. Each round is executed on the
cluster; a round starts from the current frontier and explores a
new set of nodes in the search tree, resulting in a new frontier.
After a round of computation on the cluster, control is returned
to the client workstation, which decides whether to start a
new round or terminate. The client workstation declares the
algorithm over when the frontier is empty.

The nodes in the frontier that is input and output to each
round are partitioned into disjoint sets. Each partition is ma-
nipulated by an independent machine in the cluster; we attempt
to keep partitions relatively large (many tree nodes), to allow
machines to compute independently for a long time. After each
round the nodes in the output frontier are redistributed among
machines randomly to provide load-balancing of the work.

The cluster execution is handled by the Dryad runtime in
a reliable way: Dryad handles the job initialization, schedules
the data movement, reexecutes computations if they fail or
are too slow, and allocates cluster machines as they become
available.

In order to exploit the many cores available on each cluster
machine, we have implemented a separate multi-threaded
solver engine, which partitions the work of each machine
on multiple cores. The structure of the multi-threaded engine
is actually extremely similar to DryadOpt itself; the only
difference is that the multi-threaded engine also uses a simple
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Fig. 7. Parallelization strategy uses nested parallelism with a similar approach
across machines and cores.

form of work-stealing, which is easily implemented between
threads that share a single address space.

Figure 7 shows the resulting structure of the computation.
The cluster-level computation is shown on the left; each
vertical stripe is a machine. Each “transform” stage is shown
blown-up on the right: each vertical stripe is a core. Note that
the structures of the two computations are very similar.

The handling of both cluster and multi-core executions
is completely hidden from the user. The user only has to
implement a sequential solver, which is repeatedly invoked
during the transform stage.

We next describe the API offered by our infrastructure
to the users, followed by more details on the DryadOpt
implementation and caveats.

V. THE SOLVER INTERFACE

This section describes the interface between the sequential
solvers (provided by the user) and the execution engines,
shown in the middle of Figure 1. To use any of the engines
the user must only define three classes, representing an in-
stance (subproblem), the state of the computation, and the
actual function that processes subproblems. The Solver API is
represented as a set of three C# interfaces to which the users
must adhere (these are similar to the Java interfaces and C++
abstract base classes). We discuss each interface in turn, then
show how to invoke the distributed branch-and-bound solver.

A. Instance

The user must create a class to represent each subproblem
to be processed, implementing the following interface:

[Serializable]

public interface IBBInstance {}

Note that IBBInstance has no required methods. It must
be serializable, however, since objects of this kind will be
shipped between machines by DryadLINQ. Besides represent-
ing the subproblem itself, an object of this class may also
contain various pieces of subproblem-specific information,
such as a lower bound.



An instance does not need to be self-contained: instead, we
can describe it as a set of operations to be applied to its parent
in the branch-and-bound tree. We call this an incremental
representation.

For our example, the Steiner tree problem, the class that
implements this interface is called SteinerInstance, and it
represents a graph in incremental form. The instance at the root
of the tree (the original problem input) describes the whole
graph, with its list of nodes and weighted edges, together with
the original set of terminals. An instance elsewhere in the
tree contains a list of terminal insertions and vertex or edge
deletions to be applied to the parent.

We note, however, that in general the user is by no means
required to use incremental representations: subproblems can
be represented in full if desired.

B. Global State
This class is a container for the global state of the compu-

tation. It must implement the following interface:
[Serializable]

public interface IBBGlobalState {
void Merge (IBBGlobalState s);

void Copy (IBBGlobalState s);

}
The user will implement objects of this class to contain

global, problem-specific information about the computation.
An obvious example of a global state field is the value of the
best upper bound found so far. In our Steiner application, the
class implementing this interface (SteinerBBLocalState)
maintains the upper bound and the corresponding best solution.

During the distributed computation, each machine receives
a private copy of the global state, and updates it based only
on local information. The state will thus diverge between
machines. Periodically, DryadOpt will collect the various
versions of the global state and merge them into a single one.

The two required methods of IBBGlobalState enable
these operations to be performed. If s and t implement the
IBBGlobalState interface, s.Copy(t) copies the contents
of t into s. Calling s.Merge(t) changes s by merging
the state it represents with the one represented by t (which
remains unchanged). Note that merge must be idempotent, i.e.,
repeatedly merging s with t several times should produce the
same result as merging just once.

C. The Sequential Solver
Finally, the user must write a sequential solver class imple-

menting the following interface:
public interface IBBSolver {

List<IBBInstance> Solve (

List<IBBInstance> incrementalSteps,

IBBGlobalState state,

BBConfig config

)

}
The Solve method can be arbitrarily complicated, and is

entirely up to the user. Normally this is a very sophisticated

and carefully engineered sequential piece of code which
executes very efficiently; most of the code written by the user
is expected to reside in (or be called from) this function. This
function is invoked by our framework as an upcall. Solve
receives as input a single subproblem (expressed as a chain
of incremental steps), and outputs a list of child subproblems.
The output list may be empty, indicating that the user does
not wish to explore this branch of the computation further.
This can happen either because the subproblem was solved to
completion, or because of a user-implemented heuristic choice.

Note that the first input to Solve (incrementalSteps) is
actually represented as a list of objects of type IBBInstance.
The ordered list contains all instances on the path from the root
of the search tree to the open subproblem we actually need
to solve. The input to Solve is thus a list of increments. If
needed, the Solve function uses the increments to compute
a complete (nonincremental) description of the subproblem
internally.

The second parameter of Solve (state) is an object
representing (the local version of) the global state of the
computation. The Solve function may update its contents as
necessary.

Finally, the third parameter (config) is a (read-only) object
containing various hints that may be useful for Solve. Solve
may completely ignore this parameter without compromising
the correctness of the application. For example, the config-
uration contains a seed (used to coordinate random number
generators across machines), the current error verbosity level,
and the desired branching factor.

For example, in our Steiner application the solver class
(called SteinerBBSolver) uses the branching factor to de-
cide how many child instances to generate, in a trade-off
between parallelism and memory utilization (described in
detail in Section VI-B).

D. The Engine

The actual optimization engine is a generic parameterized
class that implements the following interface:

public interface BranchBoundEngine

<TInstance, TSolver, TGlobalState>

where TInstance : IBBInstance

where TSolver : IBBSolver

where TGlobalState : IBBGlobalState

{
TGlobalState

Run(TInstance i, TGlobalState g);

}

To prove the flexibility of the engine itself we have im-
plemented three versions of the branch-and-bound optimizer,
shown in Figure 1: a sequential version, a multi-threaded
version, and DryadOpt, a distributed version that runs on top
of the DryadLINQ execution engine. DryadOpt also invokes
the multi-threaded engine on each machine in the cluster.



E. Putting Everything Together

To solve an instance of the Steiner tree problem we have
to initialize two objects, representing a problem to solve and
the initial state:
SteinerInstance problem;

SteinerBBGlobalState uprBd;

Then we invoke the DryadOpt solver:
SteinerBBSolver seq = new SteinerBBSolver();

DryadOptEngine<SteinerInstance,

SteinerBBSolver,

SteinerBBGlobalState>

dryadopt = new DryadOptEngine(seq);

TGlobalState

result = dryadopt.Run(problem, uprBd);

The global state resulting from this computation contains
the solution instance.

VI. IMPLEMENTATION

Although the basic structure of the DryadOpt search al-
gorithm is quite simple, there are several details we have to
deal with in order to ensure correctness and to obtain good
performance. This is the scope of this section.

A. Distribution

In order to use the LINQ language, we have to express the
program as a chain of computations on collections. DryadOpt
manipulates collections of work units. A work unit is a
container packaging: (1) a collection of open subproblems to
be solved, including their position in the search tree, (2) a local
version of the global state, and (3) computation statistics. If
subproblems are represented incrementally, a work unit also
maintains the ancestors of these subproblems in the branch-
and-bound tree. Therefore, each work unit actually represents
an entire subtree, whose leaves are open subproblems. Each
search node of a work unit subtree is represented only once
(otherwise we could face an exponential space blow-up), as
shown in Figure 8.

DryadOpt maintains two invariants on the collections of
work units at the end of each computation round: first, dif-
ferent work units represent disjoint sets of open subproblems.
Second, the union of all work units is a frontier of the
computation, containing all open subproblems.

From the point of a view of a single machine, one round
of DryadOpt is quite straightforward. The machine receives
a collection of work units (one from each machine in the
previous round) and merges them into a single work unit. It
then transforms it into another work unit by processing some
(or all) of the open subproblems in the corresponding subtree,
possibly generating new subproblems. (Section VI-B explains
how DryadOpt chooses which subproblems to process first.)
The work unit thus created is then split (partitioned) into k
work units for the next round. We discuss the three basic
operations (merge, transform, and split) in turn.

To merge work units, the algorithm simply combines the
subtrees represented in each of them. We know their sets

Fig. 8. Search tree with three work units highlighted with different dashed
and dotted lines. A work unit contains a complete subtree ending in a subset
of the nodes of the frontier.

of leaves are disjoint, but some ancestors may appear more
than once. Since these nodes have already been processed
(by the inductive invariant), duplicates can be discarded. The
merge operation also combines statistics and global states of
the individual work units.

To transform a work unit, DryadOpt repeatedly selects a
leaf (open subproblem) from its current subtree and calls the
user-defined Solve function on it. The resulting subproblems
(if any) are then attached to the tree. This process is repeated
for a certain amount of time (as detailed in Section VI-D), or
until there are no more subproblems to solve. The resulting
subtree (even if empty) is then represented as a new work unit.

Finally, DryadOpt splits a work unit into k work units by
partitioning its open problems (leaves) into k groups. The
partition is always balanced: if there are ` leaves, the algorithm
produces k sets with either b`/kc or d`/ke elements, with
leaves assigned to these sets at random.

Note that keeping k trees in memory could be rather ex-
pensive. Fortunately, we can leverage the fact that DryadLINQ
performs streaming computation on the collections, only load-
ing what is strictly necessary from the channel storage into
memory. The split operation generates work units one at a
time, committing them immediately to the output channel
and garbage-collecting them from memory. Similarly, merge
does not need to keep all the k input trees in memory at
once: it reads the k inputs in streaming fashion and constructs
incrementally a global tree by merging the inputs one at a
time. We stress that all these operations (including the work
unit abstraction) are completely hidden from the user.

B. Traversing the Tree

There are two standard ways of traversing a search tree.
Breadth-first search (BFS) processes subproblems that are
closer to the root first. This allows broad exploration of the
search space and may eventually lead to a large (exponential)
number of open problems. In contrast, depth-first search
explores deeper nodes first. This rule ensures that there are
at most hβ open problems at any time, where h is the
maximum height of the tree and β the maximum branching
factor (number of children) of a node. DFS tends to be more



memory-efficient, since the height of a branch-and-bound tree
is typically polynomial (even linear) on the input size. On our
Steiner solver, for example, the height is bounded by |V |−|T |.

To ensure that our computational resources are fully utilized,
DryadOpt must generate enough subproblems to keep all
machines occupied. This favors BFS, which tends to generate
more problems. However, BFS is very memory-intensive. A
machine switches from BFS to DFS when it is used near its
maximum capacity. If a processor already has more than τ
open subproblems (where τ is a user-defined threshold), it
runs DFS; otherwise, it runs BFS.

A third popular traversal policy for branch-and-bound trees
is best-first (BeFS), which prefers subproblems that are more
likely to lead to good solutions according to some problem-
specific metric [28]. DryadOpt could easily be augmented to
support BeFS. However, we deliberately kept the Solver API
simple, and thus it does not currently provide a way to compare
subproblems for cost.

C. Load Balancing

In essence, the goal of DryadOpt is to traverse a rooted tree
in parallel. With k machines, a simple algorithm to achieve
this would locally split the initial problem into k subproblems,
send each subproblem to a different machine, then wait for
them to finish. Because a typical branch-and-bound tree is
extremely unbalanced, however, some machines will complete
much faster than the others.

Given the restrictive communication model imposed by
DDPEEs, DryadOpt must plan ahead of time to avoid such
situations. If a machine runs out of problems in the middle of
a round, it needs to wait for the round to end. This is in contrast
with most other distributed branch-and-bound solvers [8]–[22],
where communication is often costly, but never impossible.
In the following we discuss the techniques we employed to
overcome this problem.

First, by working in rounds and performing periodic re-
distributions, we ensure all machines start each round with
roughly the same number of open subproblems.

Second, by making sure these redistributions are random,
we try to attenuate the correlations between nearby subprob-
lems in the search tree. It is often the case the entire subtrees
are “easier” than others; in other words, the heights of the
subtrees rooted at two siblings are often similar. In general
we do not know whether a node is relatively easy or hard
until we actually process its entire subtree, but randomization
ensures that most machines have access to nodes of both kinds.

Third, DryadOpt tries to boost the effectiveness of the first
two techniques by maximizing the number of subproblems
available. One obvious way in which it does so is by preferring
BFS over DFS whenever possible, as described above. It also
uses hints to encourage the user-defined Solve function to
generate more child nodes at once when necessary.

D. Synchronization

As described, DryadOpt works in rounds, with k machines
operating in parallel. Ideally all machines should be busy at all

times, which means they should all finish simultaneously to
prevent machines to idle waiting for laggards. Unfortunately,
the DDPEE framework provides no communication channel
among processes on the same round to be used to synchronize
their termination.

Instead, DryadOpt allocates (up front) a budget to each
machine indicating how much work it can perform. A machine
stops as soon as it reaches its budget limit, even if it still
has open problems to solve. (Of course, the machine also
stops if it runs out of subproblems.) An obvious way to
specify the budget would be in terms of invocations of the
sequential solver or some other deterministic operation count.
Unfortunately, the time to process a subproblem can vary
widely within the same branch-and-bound tree, making this
approach unsuitable for load-balancing.

Alternatively, we could define the budget in terms of real
elapsed time; each node is given a certain number of seconds
b to run, and stops when this limit is reached. The limit should
be high enough to amortize the communication and setup
costs between rounds, but low enough to ensure reasonably
frequent redistributions for load-balancing purposes. Note that
b is user-defined, and can be set appropriately depending on
the properties of the system and the problem.

This approach works well as long as all k processes start
at the same time and run to completion. However, on a
shared cluster infrastructure, where multiple jobs compete
for resources (or in the presence of failures), the number of
machines available for a job can fluctuate randomly around k.

To maximize utilization, the budget includes not only a
computation time but also a deadline. When starting a new
round, the client workstation uses the current time t0 and gives
to each machine a deadline of t0 + b. To avoid pathological
cases when clocks are not properly synchronized, each cluster
machine uses min(t0 + b, tl0 + b), where tl0 is its local time.

E. Nondeterminism

As a side effect of using deadlines as the stopping criterion,
the program becomes nondeterministic: different runs of the
same program could lead to different results1. In the presence
of Dryad’s reexecution for fault tolerance, this can affect
correctness.

We illustrate what can go wrong with an example. Suppose
machine N runs to completion during the first round and
produces three work units during its allotted time: W1, W2,
and W3. When the next round starts, machine N1 reads W1,
machine N2 reads W2, and machine N3 attempts to read W3

but fails due to data corruption. At this point, Dryad must
reexecute the computation of N to generate a new copy of
W3. This nondeterministic reexecution produces three work
units, W ′1, W ′2, and W ′3. Now the computation of machine N3

is executed again, using W ′3 as an input. (N1 and N2 do not
need to be reexecuted.)

In general, however, W1 ∪ W2 ∪ W ′3 6= W1 ∪ W2 ∪ W3.
This could cause the computation to miss some parts of

1Note that the user-supplied function Solve could also be nondetermin-
istic; DryadOpt will work correctly in this case as well.



the search space (the search tree nodes in W3 \ W ′3). This
violates the invariant that the system maintains a frontier of
the computation at all times.

To work around this issue, DryadOpt materializes (by
writing to the cluster storage medium) the output of each
round. Once outputs are written, the processes that generated
them cannot be reexecuted. Note that we still allow Dryad
reexecutions within a round: the program is correct regardless
of whether N outputs (W1,W2,W3) or (W ′1,W

′
2,W

′
3). What

it must not do is mix the outputs of two executions.
Materializing the results has another benefit: it provides

“free” computation checkpointing. This enables DryadOpt
to resume computations that fail (or are stopped) from the
most recent checkpoint, allowing us to run computations for
multiple months of wall clock time.

F. Parallelism

DryadOpt supports multi-processor and multi-core execu-
tions within the same machine (either standalone or within
the cluster). The parallel execution follows the same approach
as the distributed one, in rounds. Each machine partitions its
input into c work units, each for a different thread. Threads
use a local time budget, a fraction of the machine budget. The
resulting work units are then (sequentially) merged, and the
work unit thus generated is randomly partitioned among all c
cores, starting a new round. This is repeated until the entire
machine (as opposed to individual threads) runs out of time,
or until it has no more open subproblems to solve.

As in the distributed case, a core may run out of subprob-
lems before its time expires. When this happens, it sets a bit
in shared memory stating that it is finished. By polling this
bit, the other threads stop as soon as they finish processing
the subproblem they are currently working on, thus allowing
an early redistribution of the available subproblems. This is
essentially a simple implementation of work stealing within a
single machine.

G. Statistics

During the computation, DryadOpt automatically keeps
problem-independent statistics about the computation, report-
ing them to the client workstation periodically. Statistics
include the total number of subproblems solved, the number
of open subproblems, the total time spent, and the total
(sequential) time spent on the user-defined Solve function.

VII. EXPERIMENTAL EVALUATION

We tested DryadOpt on a cluster with 240 computers, each
with 16GB of RAM and two 2.6 GHz dual-core AMD Opteron
processors, running Windows Server 2003. Jobs on the cluster
are initiated by and report to our client workstation, an Intel
Core 2 Duo E8500 at 3.16 GHz with 4 GB of RAM, running
Windows 7 64-bit.

As already mentioned, our example application is the
Steiner problem. Like DryadOpt itself, our Steiner solver was
implemented in C# using .Net 3.5 and Visual Studio 2008.

We focus our experiments on incidence instances, a well-
known benchmark for the Steiner problem consisting of ran-
dom graphs with adversarial distribution of edge weights [30].
On these instances, the sequential performance of our solver
is competitive with the best previously reported in the lit-
erature [23]–[25]. (For some other classes, such as VLSI
instances, state-of-the-art performance requires linear pro-
gramming [23], [25], [30], which for simplicity we have not
implemented in our prototype.)

The best available results on incidence instances were re-
ported in detail by Polzin [24] and obtained by an algorithm by
Polzin and Daneshmand [23]. Of the 400 incidence instances,
almost all can be solved in a few seconds or minutes by
their algorithm. On the nine hardest instances they solved,
the sequential time of their C++ code ranged from 5 hours
(instance i320-312) to almost 5 days (instance i640-342) on a
Sunfire 15000 with a 900 MHz SPARC III+ CPU. (One core
of our machines is roughly twice as fast.)

The purpose of our experiments is to illustrate how sophis-
ticated combinatorial algorithms can benefit from DryadOpt.
The sequential Steiner solver itself is not novel—it just reim-
plements ideas already used in other solvers [24]–[26]. We did
try some other test problems, such as a toy Sudoku solver and
a simple algorithm for Capacitated Vehicle Routing [31], and
they scaled equally well. Unlike our Steiner solver, however,
their sequential versions are far from the state of the art.
Hence, we do not report these results here.

A. Basic Experiments

In our first experiment, we ran our solver on each of the 9
hardest instances using 32 machines, with 4 cores each. In each
execution, the maximum branching factor β was set to 8, the
threshold τ was set to 2000 (a machine switches from BFS to
DFS when there are τ open problems), the client workstation
was allowed to run for two minutes (during initialization), and
the time budget b allocated to each round on the cluster was
10 minutes. The results are reported in Table I.

TABLE I
DRYADOPT RUNS ON SELECTED INCIDENCE INSTANCES USING 32

MACHINES WITH 4 CORES EACH.

INSTANCE SEARCH TREE RUNNING TIME
NAME OPT NODES RND CPU WALL RATIO

i320-312 18122 682705 2 72472 963 75.2
i320-314 18088 998566 2 110236 1216 90.7
i320-315 17987 1183504 2 127438 1378 92.5
i640-211 11984 751215 4 170450 2234 76.3
i640-341 32042 480730 9 571043 5984 95.4
i640-342 31978 57795 2 67593 942 71.7
i640-343 32015 325522 7 393501 4083 96.4
i640-344 31991 224639 6 333203 3558 93.6
i640-345 31994 184744 4 243652 2585 94.3

For each instance, the table shows the optimum solu-
tion (OPT), the size of the branch-and-bound tree traversed
(NODES), and the number of rounds in the distributed execu-
tion (RND). We also report the time spent by the execution in
two ways. The CPU time (CPU) is the total time spent on the
problem-specific, user-defined Solve function. The wall clock



time (WALL) is the the total execution time of the program,
i.e., the time elapsed (as measured by the client workstation)
from the moment it reads the original instance until it writes
the final output. Times are given in seconds. We also report
the ratio between these times (RATIO).

Note that most instances can be solved in less than one
hour, and all under two, even though the total CPU time is
as high as a week. The ratio between the total CPU time and
the wall clock time is usually higher than 90, indicating that
DryadOpt can use the resources at its disposal fairly efficiently
(the theoretical best possible, 128, is not too far).

In a few cases, however, the efficiency is lower, closer to
70. This tends to happen for smaller, easier instances, which
can be solved in very few rounds (as low as two). In such
cases, during a given round, many cluster machines tend to
run out of subproblems early, and must idle until all others
are done.

B. Scalability

To better assess the performance of DryadOpt, we focus
on i640-341, the hardest instance in our test set. It has 640
vertices, 40896 edges, and 160 terminals. We reran our solver
on this instance several times, varying the number of machines
(from 16 to 128) and the number of cores per machine (1, 2, or
4). To have more control over the execution, in this experiment
we provided the value of the optimum solution (34042) to the
algorithm as an input. Of course, the algorithm must still visit
the remainder of the tree to prove that this upper bound is
indeed optimal.

The initialization phase (on the client workstation) was al-
lowed to run for 2 minutes using both cores. Cluster machines
were allowed to run for 10 minutes in each round. Finally, the
maximum branching factor β was set to 8. The threshold τ for
switching from BFS to DFS was set to 10 000, high enough
to ensure BFS was always used. As a result, all runs solved
the exact same subproblems (470 795 in total). Note that, for
this particular instance, the number of subproblems increases
by only 2% if we do not provide the optimal primal solution
in advance (see Table I), indicating that our algorithm can find
it rather quickly by itself.

We start our analysis of these runs with Table II, which
reports the total CPU time of each execution (i.e., the total
time spent by the Solve function).

TABLE II
TOTAL CPU TIME FOR I640-341 WHEN VARYING THE NUMBER OF

MACHINES AND CORES.

CORES
MACHINES 1 2 4

16 410468 430204 495351
32 406853 425902 495421
64 407472 428154 499458
96 408178 430574 506130

128 407871 431546 510926

If a single core per machine is allowed, the total CPU time
is roughly 410 thousand seconds (4.75 days), and is mostly
independent of the number of machines used. This would be

the total running time if the entire execution were serialized
and there were no overhead for communication, selecting the
next problem to solve, or assembling each new subproblem
from its incremental definition (as a subpath of the search
tree).

Note that using multiple cores per machine actually in-
creases the total CPU time, since there is always some
contention between multiple cores on the same machine (for
memory access, for instance). The slowdown is rather small
(about 5%) when we go from one to two cores, but higher
than 15% when going from two to four. Recall that each
machine in the cluster actually has two dual-core CPUs. If
only two cores are in use, each thread has an entire CPU and
memory controller at its disposal; this is not the case with four
cores. The overhead of DyradOpt-initiated communication is
negligible in the parallel execution, and the speedups it obtains
are still significant.

These numbers should be compared with those on Table III,
which shows the actual (wall clock) execution time of the
algorithm, including the two minutes spent on the client work-
station. Table IV contains the same information, but given as a
speedup relative to a hypothetical sequential execution of 407
thousand seconds. They confirm that, in general, increasing the
number of machines is better than increasing the number of
CPUs per machine. For example, the algorithm is about 20%
faster when running on a single core of 128 machines than on
4 cores of 32 machines. With 512 cores, this instance can be
solved in less than half an hour, almost 230 times faster than
a sequential execution.

TABLE III
TOTAL (WALL CLOCK) TIME FOR I640-341, IN SECONDS.

CORES
MACHINES 1 2 4

16 34694 18795 11003
32 16342 9008 5298
64 8107 4311 2681
96 5509 3030 2038

128 4188 2551 1780

TABLE IV
SPEEDUP RELATIVE TO A SEQUENTIAL RUN ON I640-341.

CORES
MACHINES 1 2 4

16 11.7 21.6 37.0
32 24.9 45.2 76.8
64 50.2 94.4 151.8
96 73.8 134.3 199.7

128 97.1 159.5 228.6

With a single core, increasing the number of machines leads
to almost perfect speedup. On 128 machines, the algorithm is
about four times faster than on 32. At first sight, this appears
not to be the case with four cores: quadrupling the number of
machines (from 32 to 128) reduces the total time by a factor of
three. Note, however, that with 128 machines there is enough
time for only three distributed rounds, as Table V shows.



TABLE V
NUMBER OF ROUNDS NECESSARY TO SOLVE i640-341.

CORES
MACHINES 1 2 4

16 51 28 17
32 25 14 8
64 13 7 4
96 9 5 3

128 7 4 3

As we have argued, one should expect the computation to
be more imbalanced during the first and last rounds, with the
“middle” rounds perfectly balanced. As the results with one
core show, DryadOpt can enable linear speedups for relatively
longer runs.

Another way to observe this phenomenon is given by
Figure 9, which shows the total resource usage (given by the
number of cores multiplied by the total wall clock times in
minutes) as a function of the total number of cores used.

Fig. 9. Total resource usage for i640-341.

While the number of cores is relatively small, the total
usage remains roughly constant, indicating that more cores
can be added to the computation with no loss in efficiency.
As the number of rounds gets significantly smaller, however,
the imbalance between machines becomes more pronounced.

C. Branching Factor

We have established that, although DryadOpt can achieve
reasonable speedups when the number of rounds is very small,
it does even better when they are higher. Simply having
more rounds is not enough, however. Since machines cannot
communicate directly, DryadOpt relies on the availability of
a large number of open subproblems at the beginning of each
round. Higher branching factors help achieve this goal.

In the experiments above, the branching factor was set to
β = 8. To measure its importance, we ran DryadOpt on
the same instance, with β = 2, 4, and 8. On all cases,
the maximum computation time per machine was set to 480
seconds and each machine was allowed to use a single core.
We do not use deadlines in this experiment.

Figure 10 shows that increasing the branching factor tends
not only to lead to fewer rounds, but to make these rounds
more efficient. With all branching factors, all machines were

Fig. 10. Impact of branching factor on running times and number of rounds.

fully utilized between rounds 3 and 6. With lower branching
factors, however, machines were much more likely to run dry
in the beginning and at the end.

In general, the importance of the branching factor depends
on the complexity of the Solve function, which is responsible
for generating new subproblems. On i640-341 (our example
instance), it takes about 1 second on average, though this
number can be closer to 10 seconds for nodes higher up in the
tree. This is a significant fraction of the total time allocated
to each round, which makes high branching factors crucial. In
contrast, Table I shows that the average subproblem generated
from instances i320-31x is solved much quicker, in about a
tenth of a second. A lower branching factor is less of a problem
in such cases.

Of course, the branching factor β is just an example.
Different tradeoffs can be observed for other parameters (such
as τ and the length b of a round) as well, depending on the
problem to be solved. By specifying individual parameters,
users can fine-tune the performance.

D. Scheduling and Fault-Tolerance

Figure 11 shows the benefits of the real-time deadline
scheduling in our implementation. The figure, created with the
Artemis cluster monitoring tool [32], shows two job schedules.
The horizontal axes are aligned, and represent the time elapsed
since the start of the job. The vertical axis represents the
240 machines in the cluster. Each horizontal line indicates a
machine performing a job-related computation. The top graph
uses fixed-time budgets only, while the bottom graph uses
deadlines as well. Both jobs have a 10-minute time quota per
round. The top job uses only 3 rounds to traverse the complete
search tree, while the bottom one requires 5 rounds. It is visible
that the 5 rounds are tightly aligned to the real-time deadlines.
In these particular runs the top job lost 64 processes due to
preemption from the cluster-level scheduler, while the bottom
job lost 396 (our cluster uses a fair-share scheduler [33], which
can preempt processes when new jobs are submitted; our
figures do not show the cluster utilization by jobs from other
concurrent users). Despite the more adversarial environment,
the real-time scheduling achieves 20% faster execution and a
better utilization of the available cluster resources.
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Fig. 11. Influence of scheduling policy on cluster utilization.

E. Branch-and-Bound as a Heuristic

Among the 400 incidence instances on the SteinLib [30],
395 have been solved to optimality at the time of writing.
Each of the five remaining instances (i640-31[1–5]) has 640
vertices, 4135 edges, and 160 terminals. We tried using our
method to solve them exactly, but based on partial executions
we estimate each computation would take a few months, even
using all 960 cores in our cluster. This makes these instances
significantly harder than the others, which can all be solved
sequentially in no more than a week (usually much less).

We stress, however, that branch-and-bound algorithms can
still be useful in such situations. By simply changing the
pruning rule, our Steiner solver can prove that known upper
bounds are actually close to the optimal solution. Recall that
we normally prune a subproblem P if its lower bound L(P ) is
at least as high as the best known upper bound U . If, instead,
we prune whenever L(P ) ≥ (1− ε)U , we guarantee that the
optimum solution is within a factor of ε of the final upper
bound found by our algorithm.

We set ε = 0.02 and ran this modified version of our
algorithm on all five open instances, starting from the best
upper bounds listed on the SteinLib (taken from [24]). Ta-
ble VI reports the result. In each case, we show the upper
bound available at the SteinLib, followed by the best solution
we found, the number of nodes explored, and total CPU
time in seconds. Note that the primal heuristics embedded in
our algorithm actually found better solutions in every case.
Moreover, the optima of all these instances is guaranteed to
be within 2% of the reported values.

Recently, an improved upper bound has been reported2 for
instance i640-312: 35771. Using ε = 0.01, our algorithm could
prove that the optimum is at most 1% lower than this value;
to do so, it visited 23.4 million nodes in 90.5 CPU-days (it
actually ran overnight on 64 machines in our cluster).

2See http://areeweb.polito.it/ricerca/cmp/node/383.

TABLE VI
RESULTS FOR OPEN INCIDENCE INSTANCES WITH ε = 0.02.

INSTANCE STEINLIB DRYADOPT NODES TIME (S)
i640-311 36005 35895 787044 269867
i640-312 35997 35921 737367 232052
i640-313 35758 35697 6793 2525
i640-314 35727 35712 34040 8935
i640-315 35934 35887 110173 33224

VIII. CONCLUSION

While DryadLINQ provides a very high-level abstraction
for writing distributed data-parallel programs, not all of the
features provided by the DryadLINQ compiler and the Dryad
runtime match the needs of our application domain. The
system is however flexible enough for us to circumvent
the undesired characteristics without undue effort, and, most
importantly, without making any changes in the underlying
distributed software stack.

In particular, we had to override the following features:
• Serialization: The DryadLINQ-generated serialization

code assumes that the data collections that are processed
are composed of independent elements (i.e., the elements
do not share any state). For DryadOpt the work units
share common subpaths for important space savings; we
have thus implemented custom serialization which cor-
rectly dismantles and reconstructs shared data structures.

• Scheduling: Dryad jobs are “virtualized”: a Dryad job
can have many more processes than available machines;
the Dryad runtime schedules the processes on the existing
machines by time-sharing available machines. However,
especially in the presence of multiple competing jobs on
a cluster, this can lead to inefficient cluster utilization.
DryadOpt overrides Dryad’s scheduling at the application
layer using timers triggered by absolute time deadlines.

• Reexecution: Dryad provides fault-tolerant execution on
an unreliable cluster by monitoring and reexecuting failed
processes. The implicit assumption is that all Dryad job
processes are idempotent, generating the same output if
they are reexecuted. However, due to DryadOpt’s use of
timers for scheduling, execution is not deterministic. Re-
execution across some computation boundaries can lead
to a violation of the correctness invariants of the search.
DryadOpt controls reexecution boundaries by periodically
materializing partial results to stable storage.

• Multi-core parallelization: DryadOpt overrides the de-
fault DryadLINQ parallelization algorithm across cores to
use work stealing and timers for uniform load-balancing.

• Partitioning: DryadOpt achieves load balancing of the
computation by repartitioning the work units periodically.
DryadOpt assigns keys to work unit elements explicitly
in order to achieve round-robin partitioning.

• Iterated computations: Dryad graphs are constructed
statically, but the depth of the search process cannot be
statically bounded. DryadOpt implements iterative com-
putations by creating and launching multiple DryadLINQ
jobs (rounds) for each optimization problem.



With all these adaptations the resulting system is remarkably
efficient (providing very good speed-ups and scale-ups on
clusters up to hundreds of machines), and extremely generic
(the API is simple and accommodates a wide variety of
optimization problems).

Although we have not performed the exercise of porting
our application on top of other DDPEE platforms, we believe
that many of the lessons learned are directly transferable. The
platform-specific fraction of the DryadOpt code is tiny (only
12 lines are LINQ statements). Moreover, as Figure 7 shows,
our execution plan can be interpreted as a sequence of map
and reduce operations.

Since the introduction of DDPEEs in the seminal work
of [2] the space of problems that can be implemented effi-
ciently on DDPEEs has constantly grown. This work demon-
strates that optimization problems belong squarely in this
space.
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