
A Theory of Secure Control Flow

Mart́ın Abadi1, Mihai Budiu2, Úlfar Erlingsson2, and Jay Ligatti3

1 Computer Science Department, University of California, Santa Cruz
2 Microsoft Research, Silicon Valley

3 Computer Science Department, Princeton University

Abstract. Control-Flow Integrity (CFI) means that the execution of a
program dynamically follows only certain paths, in accordance with a
static policy. CFI can prevent attacks that, by exploiting buffer over-
flows and other vulnerabilities, attempt to control program behavior.
This paper develops the basic theory that underlies two practical tech-
niques for CFI enforcement, with precise formulations of hypotheses and
guarantees.

1 Introduction

Many modern attacks against computers take advantage of software flaws, such
as buffer-overflow or integer-overflow vulnerabilities. The abundance of software
flaws, and the corresponding success of the attacks, has motivated substantial
defensive efforts. These efforts include systematic attempts to eliminate those
flaws from legacy software and to avoid them in new software, relying on pro-
grammer education and security reviews. Although these attempts have been at
least partly fruitful, one might be concerned about their cost, and also about
the possibility that they will not remove all flaws. Therefore, complementary
approaches have also been considered and sometimes adopted.

One such approach is the use of various mitigation tools. These tools can be
applied to code, more or less automatically, in order to reduce or eliminate the
effects of certain vulnerabilities. The goals of these tools include runtime detec-
tion of buffer overflows [4, 13], randomization and artificial heterogeneity [11, 20],
and tainting of suspect data [17]. Unfortunately, these tools often target only
specific classes of vulnerabilities. For example, stack canaries [4] address only
certain buffer overflows in the stack (and none in the heap). Moreover, these
tools offer imperfect, hard-to-define safeguards, which determined attackers can
defeat or circumvent [12, 14, 19].

Another approach is the adoption of high-level, type-safe languages, such as
Java and C#. These languages aim to guarantee general, fundamental proper-
ties that can be defined precisely and proved rigorously, in particular memory
safety. These properties contribute greatly to program security. Unfortunately,
implementation flaws and interoperation with low-level code can weaken the
guarantees. Furthermore, it is questionable whether every piece of software will
be written or rewritten in these languages. For instance, media codecs, automatic

1

memory management, and operating-system interrupt dispatching typically rely
on hand-written, optimized machine code; it seems unlikely that they will enjoy
the full benefits of high-level languages, even in new systems.

A third approach, which we advocate, is the enforcement of Control-Flow
Integrity (CFI). CFI means that program execution dynamically follows only
certain paths, in accordance with a statically specified policy given as a control-
flow graph (CFG). Many attacks aim to subvert execution and control software
behavior. For instance, a buffer overflow in an application may result in a call to
a sensitive system function, possibly a function that the application was never
meant to use [12]. An attack may also cause a jump into the middle of a function
body, or even into the middle of a multi-byte machine-code instruction (trigger-
ing the execution of a different instruction). The resulting behavior, while allowed
at the hardware level, is in contradiction with programmer intent. Since these
attacks invariably affect control flow, CFI can prevent them.

Like various mitigation tools, CFI enforcement can be applied to existing
source code and binaries. At the same time, CFI has much in common with
the properties guaranteed by high-level, type-safe languages. In particular, as
we demonstrate, CFI can be defined precisely and proved rigorously. In these
respects, CFI enforcement resembles the use of proof-carrying code (PCC) [10].
(Indeed, although research on PCC has emphasized memory safety, PCC could
be used for proving CFI, even under weak assumptions on memory.)

In a companion paper [2], we explore the benefits of CFI and present an
implementation. The implementation relies on machine-code rewriting that in-
struments software with runtime checks; it applies to legacy systems (e.g., code
compiled from C and C++ on x86 Windows) with only a modest performance
overhead. We also validate, experimentally, that CFI thwarts many types of ex-
ploits and several documented past attacks. Finally, we show that CFI can help
in the enforcement of additional security properties.

The CFG on which CFI relies should be designed to exclude unwanted soft-
ware behavior. Even a coarse CFG that prevents jumps into the middle of func-
tion bodies can be useful; such a coarse CFG is easy to obtain. A more precise
CFG, of the sort that could be derived by source-code analysis, might also pre-
vent certain dangerous sequences of system calls. Our machine-code rewriting
aims to guarantee CFI with respect to the CFG, whatever it is. Simple static
verification can ensure that the rewriting achieves the specified effect. This veri-
fication can be seen as a special case of PCC proof-checking, while the rewriting
obviates the need for explicit logical proofs. Only the verification is required
for establishing CFI; design or implementation flaws in the rewriting do not
compromise security.

This paper is concerned with the foundations of CFI. It develops the basic
theory that underlies our strategy for CFI enforcement. It includes a detailed
semantics for programs, definitions for program instrumentation (focusing on its
verification), and theorems about the executions of instrumented programs. We
regard this basic theory as central to our approach. The precise formulation of
hypotheses, guarantees, and proofs is a major difference between our approach

2

and those based on previous mitigation tools, and an important similarity with
research on high-level, type-safe languages. Furthermore, a formal approach is
useful not only for elucidating hypotheses and guarantees, but also as a guide
in the design and development of techniques. Indeed, in the course of our work,
we rejected several alternatives that made unclear assumptions or that offered
protection only in hard-to-define circumstances.

The main theorems of the paper establish that CFI holds for programs
processed according to either of two enforcement techniques, even with respect
to a powerful attacker that controls data memory. Although both techniques em-
ploy machine-code rewriting, they differ in their specifics and their assumptions.
Most noticeably, one technique requires that data memory not be executable.
This assumption, which we call NXD, thwarts some attacks on its own, but
not those that exploit unintended control transfers in pre-existing code, such
as “jump-to-libc” attacks [12]. Some architectures support NXD, and recent
versions of Windows use it [8]. NXD can also be implemented in software, with
support from the underlying operating system [11]. The second technique is a
refinement of the first with a built-in, inline implementation of NXD.

This second technique relies on a generalization of Software Fault Isolation
(SFI) [18] that we call Software Memory Access Control (SMAC). SFI provides
multiple domains of memory protection within a single address space. For SFI,
code inserted before each memory access ensures that the target memory ad-
dress is within a certain range. For SMAC, more generally, each instruction that
may perform a memory access is constrained to a particular range of addresses,
potentially a different one per instruction. CFI can facilitate the implementation
of SMAC for irregular architectures, such as the x86, on which traditional SFI
has been problematic [5]. One of the goals of this paper is to show that this
cooperation between CFI and SMAC is real, rather than an incorrect result of
informal circular reasoning.

Section 2 defines the setting for our work: a simple machine model and a
corresponding machine language. Section 3 discusses CFGs. Section 4 describes
and analyzes the first technique for CFI enforcement. Section 5 concerns the
second technique, in which CFI enforcement is combined with SMAC. Section 6
concludes. Some details of proofs and additional material can be found at our
website [3].

2 The Setting: Programs and their Semantics

The machine model and the programs that we define in this section are typical
of formal studies in programming-language theory. For the sake of simplicity,
we work with a basic machine model and a small set of machine instructions
which enable us to study CFI but exclude virtual memory, dynamic linking,
threading, and other sophisticated features found in actual systems. Essentially,
our language is a minor variant of that of Hamid et al. [6]. We have yet to
attempt a similar investigation for the full x86 architecture and for the x86 code
sequences that our instrumentation inserts. We believe that such an investigation

3

would be feasible, particularly because of the similarities between our x86 code
sequences and those studied in this paper; on the other hand, the investigation
would certainly be laborious and may yield diminishing returns.

2.1 Machine Model

For our machine model, we define words, memories, register files, and states as
follows:

Word = {0, 1, ...}
Mem = Word → Word

Regnum = {0, 1, ..., 31}
Regfile = Regnum → Word
State = Mem × Regfile ×Word

We often adopt the notations w and pc for elements of Word , and M , R, and
S for elements of Mem, Regfile, and State, respectively. When S is a state, we
may write S.M , S.R, and S.pc for the Mem component, the Regfile component,
and the pc in S, respectively.

We further distinguish between code memory (Mc) and data memory (Md),
so we split memories into two functions with disjoint domains, each of them
contiguous. We assume that a statically defined program that comprises n > 0
instructions always occupies memory locations 0 to n − 1, with the first in-
struction of the program located at address 0. When we split a memory M
into Mc and Md , we write M = Mc |Md , provided Mc contains n > 0 in-
structions and the following constraints hold: dom(Mc) = {0..(n − 1)}, and
dom(Md) = dom(M)− dom(Mc), and Mc(a) = M(a) for all a ∈ dom(Mc), and
Md(a) = M(a) for all a ∈ dom(Md). We consider only states whose memory is
partitioned in this way. We write S.Mc to indicate the code memory of state S,
and S.Md for the data memory.

Similarly, we split register files into distinguished and general registers. When
we split R into R0−2 and R3−31 , we write R = R0−2 |R3−31 provided the follow-
ing constraints hold: dom(R0−2) = {r0, r1, r2}, and dom(R3−31) = {r3..r31},
and R0−2 (r) = R(r) for all r ∈ dom(R0−2), and R3−31 (r) = R(r) for all
r ∈ dom(R3−31). We distinguish the registers r0, r1, and r2 because we assume
that they are used only in CFI enforcement code. (In fact, in our x86 imple-
mentation, we need only one distinguished register and only at certain program
points. This feature is important in practice, since the x86 architecture has few
registers. While permanently reserving many registers for a special use is diffi-
cult, finding a free register now and then is easy.)

2.2 Instructions

Our language is that of Hamid et al. [6] plus a label instruction in which an
immediate value can be embedded and which behaves like a nop. (It is not too

4

If Dc(Mc(pc))= then (Mc |Md ,R, pc) →n

label w (Mc |Md ,R, pc + 1), when pc + 1 ∈ dom(Mc)

add rd , rs , rt (Mc |Md ,R{rd 7→ R(rs) + R(rt)}, pc + 1),

when pc + 1 ∈ dom(Mc)

addi rd , rs ,w (Mc |Md ,R{rd 7→ R(rs) + w}, pc + 1),

when pc + 1 ∈ dom(Mc)

movi rd ,w (Mc |Md ,R{rd 7→ w}, pc + 1), when pc + 1 ∈ dom(Mc)

bgt rs , rt ,w (Mc |Md ,R,w), when R(rs) > R(rt) ∧ w ∈ dom(Mc)

(Mc |Md ,R, pc + 1),

when R(rs) ≤ R(rt) ∧ pc + 1 ∈ dom(Mc)

jd w (Mc |Md ,R,w), when w ∈ dom(Mc)

jmp rs (Mc |Md ,R,R(rs)), when R(rs) ∈ dom(Mc)

ld rd , rs(w) (Mc |Md ,R{rd 7→ M (R(rs) + w)}, pc + 1),

when pc + 1 ∈ dom(Mc)

st rd(w), rs (Mc |Md{R(rd) + w 7→ R(rs)},R, pc + 1),

when R(rd) + w ∈ dom(Md) ∧ pc + 1 ∈ dom(Mc)

Fig. 1. Normal steps.

hard to implement such a label instruction on common architectures.) The set
of instructions is:

Instr ::= instructions
label w label (with embedded constant)
add rd , rs , rt add registers
addi rd , rs ,w add register and word
movi rd ,w move word into register
bgt rs , rt ,w branch-greater-than
jd w jump
jmp rs computed jump
ld rd , rs(w) load
st rd(w), rs store
illegal illegal

where w is a word and rs , rt , and rd are registers. Thus, instructions may contain
words. Like Hamid et al., we omit the routine details of instruction storage and
decoding. We assume a function Dc : Word → Instr that decodes words into
instructions.

5

(Mc |Md ,R0−2 |R3−31 , pc) →a (Mc |Md
′,R0−2 |R3−31

′, pc)

Fig. 2. Attacker steps.

2.3 A Semantics of Programs under Attack

In this section we give a first semantics for instructions. Figures 1 and 2 define
two binary relations on states, →n and →a.

– The relation →n models normal small steps of execution, that is, those steps
that may occur in the absence of an attacker. This relation is deliberately
incomplete: many states are “stuck”, including those where Dc(Mc(pc)) =
illegal .

– The relation →a models attack steps. In such a step, an attacker may un-
conditionally and arbitrarily perturb data memory and non-distinguished
registers. For example, the attacker may modify a part of memory to con-
tain a bit pattern that appears elsewhere in memory. Thus, intuitively, the
attacker can read all of memory.
An attack step is quite similar to the possible effect of a computation step in
another execution thread (which our model does not represent). In particu-
lar, another thread can access all of memory, and can arbitrarily modify data
memory. Moreover, registers are specific to a thread, and the values of the
registers of one thread might be affected by another thread only if those val-
ues are read from memory (possibly after being “spilled” into memory). An
attack step therefore corresponds to a computation step in another thread
if the values of general registers may be read from memory but those of
distinguished registers are not. On the other hand, for simplicity, an attack
step need not be restricted to computable functions.

The relation →, defined below, is the union of →n and →a. Thus, this relation
represents a computation step in general, either a normal state transition or one
caused by an attacker.

S →n S ′

S → S ′
S →a S ′

S → S ′

In security, it is important to identify assumptions, and to justify them to the
extent possible, because an attacker that can invalidate assumptions can often
circumvent security enforcement. Our definitions embody several assumptions,
which we discuss next:

1. The definition of →n implies NXD (that is, that data cannot be executed
as code). Similarly, the definitions of →n and →a imply that code memory
cannot be modified at runtime. We call this property NWC. As indicated
in the introduction, NXD is often a reasonable assumption. NWC holds on
most current systems (except at special times, such as during the initial
loading of dynamic libraries).

6

If Dc(M(pc))= then (M,R, pc) →n

label w (M,R, pc + 1)

add rd , rs , rt (M,R{rd 7→ R(rs) + R(rt)}, pc + 1)

addi rd , rs ,w (M,R{rd 7→ R(rs) + w}, pc + 1)

movi rd ,w (M,R{rd 7→ w}, pc + 1)

bgt rs , rt ,w (M,R,w), when R(rs) > R(rt)

(M,R, pc + 1), when R(rs) ≤ R(rt)

jd w (M,R,w)

jmp rs (M,R,R(rs))

ld rd , rs(w) (M,R{rd 7→ M (R(rs) + w)}, pc + 1)

st rd(w), rs (M{R(rd) + w 7→ R(rs)},R, pc + 1)

Fig. 3. Normal steps (assuming less memory protection).

2. The definition of →a allows for the possibility that the attacker is in control
of data memory. This aspect of the model of the attacker is conservative,
but unfortunately close to reality. Buffer overflows and other vulnerabilities
often allow an attacker to write to arbitrary locations in data memory even
before subverting control flow [12].

3. The definition of →a implies that the attacker cannot modify the distin-
guished registers r0, r1, and r2. In practice, one may ensure this property
by avoiding the use of r0, r1, and r2 outside the CFI enforcement code and
preventing those registers from “spilling” into memory. Our proofs require
only a weaker assumption, namely that the attacker cannot modify r0, r1,
and r2 during the execution of CFI enforcement code.

4. The machine model and the definition of →n exclude the possibility that a
jump would land in the middle of an instruction. In practice, many archi-
tectures (RISC architectures, in particular) exclude this possibility, and our
x86 CFI implementation prevents it. For simplicity, we do not address this
feature in the formal analysis.

2.4 A More Permissive Semantics of Programs under Attack

Assumptions NXD and NWC do not hold in some settings, for example on
architectures without memory-protection facilities. We should therefore consider
an alternative to the program semantics of Section 2.3. For brevity, and since
there is no risk of ambiguity below, we reuse the symbols →n, →a, and →.

The resulting, relaxed definition of normal execution steps is in Figure 3.
These normal steps can arbitrarily violate NXD and NWC, possibly under the
indirect influence of an attacker. On the other hand, the rules for attack steps

7

and general steps remain those of Section 2.3. In particular, we still require that
an attack step cannot directly alter code memory, the distinguished registers, or
the program counter. We believe that these restrictions often hold in practice.
Moreover, they are necessary: without them, an attacker could trivially create
new code (outside the original CFG) and trigger its execution.

3 The CFG

Our instrumentation of a program relies on a CFG for the program, as specifi-
cation of a CFI policy. Next we discuss this CFG.

The nodes of the CFG are words that represent program addresses. Given
a graph G for Mc, and w ∈ dom(Mc), we let succ(w) be the set of words w′ ∈
dom(Mc) such that G has an edge from w to w′. We say that w′ is a destination
if there exists w such that Dc(Mc(w)) is a computed jump instruction (jmp rs)
and w′ ∈ succ(w).

We need not constrain how the CFG is obtained, or how it matches the
executions of the program before instrumentation. The CFG might be computed
by analyses, static or dynamic. It might also be derived, at least in part, from
a security policy, for example one expressed as a security automaton [5, 7]. (For
our implementation, we derive the CFG by static analysis of binaries.) We do
require:

1. If Dc(Mc(w0)) = label w , or add rd , rs , rt , or addi rd , rs ,w , or movi rd ,w ,
or ld rd , rs(w), or st rd(w), rs , then succ(w0) = {w0 + 1} ∩ dom(Mc).

2. If Dc(Mc(w0)) = bgt rs , rt ,w then succ(w0) = {w0 + 1,w} ∩ dom(Mc).
3. If Dc(Mc(w0)) = jd w then succ(w0) = {w} ∩ dom(Mc).
4. If Dc(Mc(w0)) = jmp rs then succ(w0) 6= ∅.
5. Dc(Mc(w0)) = illegal then succ(w0) = ∅.
6. If w0, w1 ∈ dom(Mc), then succ(w0)∩ succ(w1) = ∅ or succ(w0) = succ(w1).

When these properties hold, we say that the graph in question is a CFG for Mc .
These properties hold by definition for many graphs that arise from code

analysis. Only the last one (6) is non-trivial. Property 6 is not essential—we
can avoid it at the cost of additional dynamic checks; on the other hand, it is
convenient and often reasonable. Property 6 can be satisfied by adding edges to
a graph; the additional edges result in a looser CFI policy. We believe that this
approach is satisfactory in practice: when most addresses are not destinations,
even a coarse CFG that allows control to flow from any jump instruction to any
destination can thwart many attacks. Alternatively, property 6 can be satisfied
by duplicating nodes where the condition is violated. In the extreme, unrealistic
case where the condition is violated at all nodes, we may rely on the following
construction: given a graph G, we define a new graph G′ such that the nodes of
G′ are pairs of nodes of G, and there is an edge from (a1, a2) to (b1, b2) in G′ when
b1 = a2 and there is an edge from a2 to b2 in G. (We omit the straightforward
proof that G′ satisfies property 6.)

8

Because of property 6, we can put destinations into equivalence classes. We
give each equivalence class an identifier, called an ID. We represent these IDs by
words. For a jmp instruction at address w in Mc, we let dst(w) be the ID of all
successors of w. Thus, dst(w) is the ID of any element of succ(w).

We write succ(Mc, G,w) and dst(Mc, G,w), instead of succ(w) and dst(w)
respectively, when we wish to be explicit on Mc and G.

4 CFI Enforcement (without SMAC)

In this section we present and analyze our first technique for CFI enforcement.

4.1 CFI Enforcement by Instrumentation

CFI means that, during program execution, whenever a machine-code instruc-
tion transfers control, it targets a valid destination according to a given CFG.
For instructions that target a constant destination, this requirement can be dis-
charged statically. On the other hand, for computed control-flow transfers (whose
destination is determined at runtime), this requirement must be discharged with
a dynamic check.

Machine-code rewriting offers an attractive, realistic strategy for implement-
ing dynamic checks. Modern tools for binary instrumentation address the sub-
stantial technical difficulties of machine-code rewriting [15, 16].

Unfortunately, machine-code rewriting remains complex and tied to many
implicit compiler-specific details. Therefore, for the sake of trustworthiness, CFI
enforcement should preferably depend only on simple, final, static verification
steps that check that the instrumentation has produced an acceptable result.
These steps, but not the machine-code rewriting, will be part of the “trusted
computing base”.

For the present purposes, the verification steps consist in ensuring that a
code memory Mc and a CFG G for Mc satisfy the following conditions:
1. If n is the length of dom(Mc), then the instruction at n − 1 is illegal . (In

other words, the final instruction is illegal .)
2. If w0 ∈ dom(Mc) is a destination, then the instruction at w0 is label w,

where w is w0’s ID. Conversely, if w0 ∈ dom(Mc) holds a label instruction,
then w0 is a destination. (In other words, label instructions can be used only
for inline tagging with IDs. This requirement applies to code memory, but
not to data memory. In fact, the attacker may, at any time, write label w
into any location in data memory.)

3. If w0 ∈ dom(Mc) holds a jmp instruction, then this instruction is jmp r0

and it is preceded by a specific sequence of instructions, as follows:

addi r0, rs, 0
ld r1, r0(0)
movi r2, IMM
bgt r1, r2,HALT
bgt r2, r1,HALT
jmp r0

9

where rs is some register, HALT is the address of the illegal instruction
specified in condition (1), and IMM is the word w such that Dc(w) =
label dst(w0). This code compares the dynamic target of a jump, which
is initially in register rs, to the label instruction that is expected to be the
target statically. When the comparison succeeds, the jump proceeds. When
it fails, the program halts.

4. If bgt rs , rt ,w or jd w appear anywhere in Mc, then the target address w
does not hold a jmp instruction or the occurrences of the instructions

ld r1, r0(0)
movi r2, IMM
bgt r1, r2,HALT
bgt r2, r1,HALT

that precede a jmp instruction according to condition (3). The target address
may hold addi r0, rs, 0. (Note that (2) removes the possibility that a jmp
instruction can jump to another jmp instruction or to any of the preceding
instructions considered here.)

We let the predicate I(Mc, G) mean that Mc and its CFG G satisfy the con-
junction of the conditions above.

4.2 A Theorem about CFI

With these definitions, and under the semantics of Section 2.3, we can obtain
formal results about our instrumentation method.

Here we present a simple but fundamental result that expresses integrity
of control flow. The following theorem states that every execution step of an
instrumented program is either an attack step in which the program counter
does not change, or a normal step to a state with a valid successor program
counter. Thus, despite attack steps, the program counter always follows the
CFG.

Theorem 1. Let S0 be a state (Mc |Md , R, pc) such that pc = 0 and I(Mc , G),
where G is a CFG for Mc, and let S1, . . . , Sn be states such that S0 → S1 →
... → Sn. Then, for all i ∈ 0..(n− 1), either Si →a Si+1 and Si+1.pc = Si.pc, or
Si+1.pc ∈ succ(S0.Mc, G, Si.pc).

The proof of this theorem consists in a fairly classical induction on executions,
with an invariant. In particular, the proof constrains the values of the distin-
guished registers within the instrumentation sequences, but puts no restrictions
on the use of these registers elsewhere in the program.

Although this theorem is fairly easy to state, it has strong consequences.
In particular, it implies that the attacker cannot cause the execution of code
that would appear unreachable according to the CFG. For example, if a certain
libc routine should not be reachable, then executing the code memory will
never result in running that routine. Thus, “jump-to-libc” attacks that target

10

dangerous routines (such as system in Unix and ShellExecute in Windows)
can be effectively thwarted.

As explained in the introduction, our first technique for CFI enforcement
depends on NXD. More specifically, the theorem depends on the formal version
of NXD, which says that, during execution, the targets of code transfers are
always in the domain of code memory. Without this property, the theorem would
fail, since data memory may well contain label w instructions that look like the
expected destinations of jmp instructions.

5 CFI Enforcement (with SMAC)

Our second technique for CFI enforcement builds on the first, eliminates the
need for NXD, and allows program execution steps to modify code memory.
While it may be viewed as a refinement of the first (perhaps via a simulation
relation), in this section we present it and study it on its own, as a complete and
separate mechanism.

SMAC has a number of applications beyond the one described here. For
instance, it can serve to protect a call stack in memory, and thereby serve to
strengthen CFI by matching calls and returns dynamically [2]. For brevity, we
do not formalize those applications in this paper.

5.1 CFI Enforcement by Instrumentation (with SMAC)

We assume that the minimum and maximum addresses of code and data memory
are known at instrumentation time, and let min(M) and max(M) respectively
return the minimum and maximum addresses in the domain of memory M .

The SMAC-based verification steps consist in ensuring that a code memory
Mc and a CFG G for Mc satisfy the following conditions:

1. If n is the length of dom(Mc), then the instruction at n− 1 is illegal .
2. If w0 ∈ dom(Mc) is a destination, then the instruction at w0 is label w,

where w is w0’s ID. Conversely, if w0 ∈ dom(Mc) holds a label instruction,
then w0 is a destination.

3. If w0 ∈ dom(Mc) holds at a st instruction, then this instruction is st r0(0), rs

and it is preceded by a specific sequence of instructions, as follows:

addi r0, rd, w
movi r1,max(Md)
movi r2,min(Md)
bgt r0, r1,HALT
bgt r2, r0,HALT
st r0(0), rs

where rd is some register, w is some offset (a word), and HALT is the address
of the illegal instruction specified in condition (1). This code constrains a
store to memory, with address initially given by R(rd) + w, to be between

11

min(Md) and max(Md). This constraint is imposed by two dynamic compar-
isons. When these two comparisons succeed, the store proceeds; otherwise,
the program halts.

4. If w0 ∈ dom(Mc) holds a jmp instruction, then this instruction is jmp r0

and it is preceded by a specific sequence of instructions, as follows:

addi r0, rs, 0
movi r1,max(Mc)
movi r2,min(Mc)
bgt r0, r1,HALT
bgt r2, r0,HALT
ld r1, r0(0)
movi r2, IMM
bgt r1, r2,HALT
bgt r2, r1,HALT
jmp r0

where rs is some register, HALT is the address of the illegal instruction
specified in condition (1), and IMM is the word w such that Dc(w) =
label dst(w0). This code is a combination of the code for jmp described in
Section 4 with an analogue of the code for st described above. As in the code
for st , an address is constrained to be within a range; here the range is the
domain of code memory, and the address is the dynamic target of a jump,
held in rs. Then, as in the code for jmp in Section 4, that dynamic target is
compared with the label instruction expected statically. The program halts
unless all checks succeed.

5. If bgt rs , rt ,w or jd w appear anywhere in Mc, then the target address w is
in code memory (that is, w ∈ dom(Mc)), and w does not hold st instructions
or any of the preceding instructions listed in (3), or jmp instructions or any
of the preceding instructions listed in (4), except possibly the first of these
instructions, namely addi r0, rd, w and addi r0, rs, 0, respectively.

We let the predicate Is(Mc, G) mean that Mc and its CFG G satisfy the con-
junction of the conditions above.

5.2 A Theorem about CFI with SMAC

With the relaxed semantics of Section 2.4 and the instrumentation of Section 5,
we obtain a direct analogue to Theorem 1.

Theorem 2. Let S0 be a state (Mc |Md , R, pc) such that pc = 0 and Is(Mc , G),
where G is a CFG for Mc, and let S1, . . . , Sn be states such that S0 → S1 →
... → Sn. Then, for all i ∈ 0..(n− 1), either Si →a Si+1 and Si+1.pc = Si.pc, or
Si+1.pc ∈ succ(S0.Mc, G, Si.pc).

The proof of this theorem is analogous to that of Theorem 1.
Because SMAC is implemented by inline checks, it could be circumvented by

computed control-flow transfers into or around the code sequences that perform

12

the checks. Therefore, SMAC is intimately tied to CFI, which prevents such
subversive flows of control. Accordingly, our theorem is not about SMAC in
isolation, but rather about the combination of SMAC and CFI.

6 Conclusion

In this paper we study techniques for the enforcement of Control-Flow Integrity
(CFI). In a simple low-level language of the kind common in programming-
language theory, we give definitions for program instrumentation and theorems
about the executions of the instrumented programs. The rigorous clarification
of assumptions and guarantees is helpful in the development and validation of
software-security techniques, and more broadly beneficial for security. While our
theorems do not directly say that nothing bad will ever happen—and indeed CFI
does not prevent all security problems—they do imply fundamental properties
that exclude a variety of attacks.

Many attacks make use of the fact that, at the lowest levels of systems,
almost any behavior is considered valid—independently of whether the executing
software is written in a structured fashion, e.g., as high-level functions in C
or C++. For instance, even activity that is patently invalid for programs that
originate in high-level, structured languages (such as jumping into the middle of
a function body) is permitted at the hardware level. Similarly, even programs
that use very limited system functionality (such as those that only draw on the
screen but never use the file system or network) are typically allowed to invoke
any operating system service or runtime library routine.

CFI can align low-level behavior with high-level intent, as specified in a CFG.
In this respect, CFI is reminiscent of the use of typed low-level languages, such
as TAL [9], and of efforts to bridge the gaps between high-level languages and
actual behavior (e.g., [1]). Furthermore, the basic theory of CFI enforcement
that we develop in this paper relies heavily on fundamental ideas and techniques
of the modern literature on programming languages. We regard the viability
of this theory as an important feature of CFI. More broadly, we believe that
theories based on programming-language methods can enhance assurance and
provide guidance for a wide range of approaches to software security.

Acknowledgments Mart́ın Abadi and Jay Ligatti participated in this work while
at Microsoft Research, Silicon Valley. Discussions with Greg Morrisett and Ilya
Mironov were helpful to this paper’s development and improved its exposition.
Milenko Drinic and Andrew Edwards of the Vulcan team were helpful to our
implementation efforts.

References

1. M. Abadi. Protection in programming-language translations. In K.G. Larsen,
S. Skyum, and G. Winskel, editors, Proceedings of the 25th International Collo-
quium on Automata, Languages and Programming, volume 1443 of Lecture Notes in

13

Computer Science, pages 868–883. Springer-Verlag, 1998. Also Digital Equipment
Corporation Systems Research Center report No. 154, April 1998.

2. M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity: Prin-
ciples, implementations, and applications. In Proceedings of the ACM Conference
on Computer and Communications Security, 2005. A preliminary version appears
as Microsoft Research Technical Report MSR-TR-05-18, February 2005.

3. M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Further formal material
on CFI and SMAC. Manuscript, available at http://research.microsoft.com/

research/sv/gleipnir, 2005.
4. C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,

Q. Zhang, and H. Hinton. StackGuard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks. In Proceedings of the Usenix Security Symposium,
pages 63–78, 1998.

5. Ú. Erlingsson and F.B. Schneider. SASI enforcement of security policies: A retro-
spective. In Proceedings of the New Security Paradigms Workshop, pages 87–95,
1999.

6. N. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A Syntactic Approach
to Foundational Proof-Carrying Code. Technical Report YALEU/DCS/TR-1224,
Dept. of Computer Science, Yale University, 2002.

7. J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms
for run-time security policies. International Journal of Information Security, 4(1–
2):2–16, February 2005.

8. Microsoft Corporation. Changes to functionality in Microsoft Windows XP SP2:
Memory protection technologies, 2004. http://www.microsoft.com/technet/

prodtechnol/winxppro/maintain/sp2mempr.mspx.
9. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly

language. ACM Transactions on Programming Languages and Systems, 21(3):527–
568, 1999.

10. G. Necula. Proof-carrying code. In Proceedings of the 24th ACM Symposium on
Principles of Programming Languages, pages 106–119, January 1997.

11. PaX Project. The PaX project, 2004. http://pax.grsecurity.net/.
12. J. Pincus and B. Baker. Beyond stack smashing: Recent advances in exploiting

buffer overruns. IEEE Security and Privacy, 2(4):20–27, 2004.
13. O. Ruwase and M.S. Lam. A practical dynamic buffer overflow detector. In Pro-

ceedings of Network and Distributed System Security Symposium, pages 159–169,
2004.

14. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the ef-
fectiveness of address-space randomization. In Proceedings of the ACM Conference
on Computer and Communications Security, pages 298–307, 2004.

15. A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary transformation in a dis-
tributed environment. Technical Report MSR-TR-2001-50, Microsoft Research,
2001.

16. A. Srivastava and A. Eustace. ATOM: A system for building customized program
analysis tools. Technical Report WRL Research Report 94/2, Digital Equipment
Corporation, 1994.

17. G.E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution via
dynamic information flow tracking. In Proceedings of the International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
pages 85–96, 2004.

18. R. Wahbe, S. Lucco, T.E. Anderson, and S.L. Graham. Efficient software-based
fault isolation. ACM SIGOPS Operating Systems Review, 27(5):203–216, 1993.

14

19. J. Wilander and M. Kamkar. A comparison of publicly available tools for dynamic
buffer overflow prevention. In Proceedings of the Network and Distributed System
Security Symposium, pages 149–162, 2003.

20. J. Xu, Z. Kalbarczyk, and R.K. Iyer. Transparent runtime randomization for
security. In Proceedings of the Symposium on Reliable and Distributed Systems,
pages 260–269, 2003.

15

