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Figure 1: DryadLINQ software stack.
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1. THE DRYADLINQ PLATFORM
In the last 7 years at Microsoft Research in Silicon Val-

ley we have constructed the DryadLINQ software stack for
large-scale data-parallel cluster computations. The archi-
tecture of the ensemble is depicted in Figure 1. The goal of
the DryadLINQ project is to make writing parallel programs
manipulating large amounts of data (terabytes to petabytes)
as easy as programming a single machine. DryadLINQ is a
batch computation model1, optimized for throughput; since
it is targets large clusters of commodity computers fault-
tolerance is a primary concern. A primary tenet is that
moving computation close to the data is much cheaper than
moving the data itself. Here we discuss briefly the current
architecture of the system (but more research is ongoing).

Our software runs on relatively inexpensive computer clus-
ters, using unmodified Windows Server. Our software makes
minimal assumptions about the underlying cluster, and has

1Our system does not address interactive computation,
wide-area (grid) computing, in-memory computation (e.g.,
HPC) or streaming.
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been ported to several platforms: the Cosmos cluster run-
time (built and used internally by Bing), Windows HPC
Server and Windows Azure.

We have built a simple distributed filesystem, TidyFS [5]2.
All cluster machines have local disks, providing persistent
storage; these disks are aggregated by TidyFS into a global
filesystem. We assume that files can be very large, append-
only, and thus partitioned into multiple pieces, each piece
being replicated on several machines for fault-tolerance. Es-
sentially, TidyFS is a reliable metadata service, allowing
cluster applications to locate the actual data, which is stored
as raw files on the local filesystem of each machine.

Dryad [9] is a distributed execution engine. Dryad pro-
grams (jobs) are coarse-grain, acyclic dataflow graphs. Each
vertex in the job graph is an arbitrary computation, and
vertices communicate with each other using point-to-point
channels. The job graph is “virtualized,” i.e., it is not tied
to the available resources, and it can be executed by time-
sharing these resources for the job vertices. For providing
application-independent fault-tolerance Dryad assumes that
job vertices are idempotent, computing a deterministic func-
tion of the contents of their input channels. Each channel
contains a finite set of abstract records. Dryad is currently
deployed by Bing for large-scale analytics, using many tens
of thousands of machines and analyzing tens of petabytes of
data every day.

In practice all Dryad computations are synthesized au-
tomatically from high-level languages. DryadLINQ [17,
11] is our compiler3. The input language of DryadLINQ is
.Net. DryadLINQ takes advantage of the LINQ (Language-
Integrated Query) extensions to .Net to generate parallel
computations. LINQ is a small declarative and functional
language embedded in .Net that operates on collections of
values. LINQ is similar to the database relational algebra,
but has a much richer data model, since LINQ collections
can contain arbitrary .Net objects. LINQ computations are
compiled into dataflow graphs using sophisticated optimiza-
tions [14, 16]. DryadLINQ takes advantage of the strong
typing of .Net to generate efficient serialization code for do-
ing data I/O. DryadLINQ not only parallelizes the compu-
tation across machines, it also parallelizes the computation
on each machine across CPU cores. By leveraging the na-
tive support for LINQ in the Visual Studio IDE, DryadLINQ

2DryadLINQ also interoperates with several other storage
layers, such as Cosmos, the Distributed Storage Catalog,
SQL Server, and even raw files exposed through remote file
access protocols.
3Other compilers that target Dryad exist, such as Scope [3].



provides a seamless experience writing programs that span
multiple jobs (workflows).

Many large-scale computations are performed on data sets
that grow constantly (e.g., search logs). DryadInc [15]
rewrites such computations to be incremental by rewriting
Dryad graphs. the incrementalization effort can be auto-
mated with knowledge about program semantics, as done
by the Nectar [8] system, which unifies storage, computa-
tion and incrementalization. Storage is treated as a cache
of computation results, enabling a simple trade-off between
(re)computation and persisting (partial) results.

In batch computing systems big jobs can impede the timely
progress of other computations. The Quincy [10] sched-
uler attempts to provide a compromise between fairness and
efficiency by optimizing resource assignment using a dis-
tributed max-flow model. Quincy takes advantage of the
fault-tolerance mechanisms of Dryad to perform preemptive
vertex-level scheduling, dramatically improving the interac-
tive user experience of sharing a large cluster.

While DryadLINQ provides the illusion of programming
a computer cluster as a single machine, the presence of bugs
and failures may reveal the complexity of the underlying
system. We have built tools such as Artemis [4] for profil-
ing and visualizing the performance of distributed computa-
tions, and Daphne [12] for job introspection and debugging.

On these foundations we have built various domain-specific
libraries: e.g., branch-and-bound search in DryadOpt [1],
information retrieval [6], machine learning [7] and PINQ for
privacy-preserving computations [13].

2. TRAINING KINECT
The reliability and usability of DryadLINQ were instru-

mental in overcoming some difficulties encountered when
building the Kinect body tracking pipeline [2]. Kinect is
a device designed to complement the Xbox 360 games con-
sole, enabling users to control the console using only body
gestures and voice control. The hardware device provides a
depth image, where each pixel is labeled with the distance to
the sensor. The Kinect SDK computes a skeletal represen-
tation of the players in the device field of view, which is used
by games and applications to control interaction. The most
computationally-intensive stage of the Kinect body track-
ing pipeline recognizes and labels each pixel in the input
scene with a (set of) likely body parts. This stage uses a
decision forest classifier. This classifier has been built using
supervised learning, by analyzing a large number of labeled
images. Training the classifier requires a very large number
of calculations, and has been implemented in DryadLINQ.

DryadLINQ provided several advantages compared with
MPI: (1) a high-level parallel programming language for
building distributed computations instead of a simple low-
level messaging API, (2) automatic and efficient serializa-
tion of complex data types for transport on the network,
(3) resource virtualization, which allowed the manipulation
of datasets much larger than the collective memory of the
available machines, (4) built-in fault-tolerance and check-
pointing, and (5) tight integration with C#, which enabled
us to reuse the libraries developed by the computer vision
experts, and orchestrate the many parallel and sequential
phases of the training in a single program.
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