Parallelizing large-scale data processing applications with
data skew: a case study in product-offer matching

*
Ekaterina Gonina
University of California, Berkeley
Berkeley, CA

egonina@eecs.berkeley.edu

ABSTRACT

The last decade has seen a surge of interest in large-scale
data-parallel processing engines. While these engines share
many features in common with parallel databases, they make
a set of different trade-offs. In consequence many of the
lessons learned for programming parallel databases have to
be re-learned in the new environment. In this paper we show
a case study of parallelizing an example large-scale applica-
tion (offer matching, a core part of online shopping) on an
example MapReduce-based distributed computation engine
(DryadLINQ). We focus on the challenges raised by the na-
ture of large data sets and data skew and show how they can
be addressed effectively within this computation framework
by optimizing the computation to adapt to the nature of
the data. In particular we describe three different strategies
for performing distributed joins and show how the platform
language allows us to implement optimization strategies at
the application level, without system support. We show that
this flexibility in the programming model allows for a highly
effective system, providing a measured speedup of more than
100 on 64 machines (256 cores), and an estimated speedup
of 200 on 1280 machines (5120 cores)of matching 4 million
offers.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming): Parallel programming;
H.3.5 [Information Storage and Retrieval]: On-line In-
formation Services

General Terms

Performance

Keywords
Offer-matching, Distributed joins, Dryad LINQ

*work done while interning at Microsoft Research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MapReduce’l1, June 8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0700-0/11/06 ...$10.00.

Anitha Kannan, John Shafer,
Mihai Budiu
Microsoft Research Mountain View, CA
ankannan, jshafer,

mbudiu@microsoft.com

1. INTRODUCTION

Recent exponential growth in internet data and the com-
moditization of parallel and cluster computing has enabled
development of large-scale data-parallel processing engines
[4, 6, 8, 14, 1, 12, 26, 21, 5, 22] and large-scale data pro-
cessing applications [2, 27]. Efficient parallelization of these
applications presents many challenges to programmers. The
data sets for web-scale applications are very large and often
skewed. For example [2] addressed the data skew problem in
computing cube materialization of large web-scale datasets,
and [27] faced the data skew problem in large-scale botnet
detection. The database community has also focused on au-
tomatically addressing the persistent data skew problem in
joining large datasets in work such as [9, 25, 23] and [13].
While we can borrow some mechanisms and techniques from
parallel databases, many techniques need to be reworked
to be efficient in the new large-scale web application set-
ting. In this paper, we investigate mechanisms for overcom-
ing these challenges using a MapReduce framework (using
DryadLINQ [26] distributed computation engine as an ex-
ample) to efficiently parallelize an example web-scale data
processing application of offer matching - matching product
offers from online merchants to products in a catalog owned
by a search engine. We show that this flexibility in the
MapReduce programming model allows for high speedups
of general large-scale web applications with significant data
skew.

A comprehensive product catalog is a pre-requisite for an
effective e-commerce search engine. Such a catalog contains
structured descriptions of products in a form of attribute
(name, value) pairs. For instance, the Bing Shopping cata-
log (shopping.bing.com) has information on more than five
million products and more than ten million offers from up-
wards of tens of thousands of merchants. To maintain the
product catalog, the search engine need to match product
offers (textual product descriptions) that it receives from
online merchants to the structured records in the product
catalog.

In this paper we describe a parallel implementation of
the offer matching algorithm on a cluster of multi-core pro-
cessors using the DryadLINQ distributed computing engine
as an example data-parallel programming framework. We
focus on efficiently handling the challenges raised by the na-
ture of large data sets and data skew and show how they
can be addressed effectively within the computation frame-
work by optimizing the computation to adapt to the nature
of the data. In particular we describe three different strate-

Structured Record (Product)

Attribute Name Attribute Value
category digital camera
brand Panasonic
product line Panasonic Lumix
model DMC-FX07
sensor resolution 7 megapixel
color silver

weight 132¢g

width 9.4 cm

height 5.1cm

depth 2.4cm

display: type LCD display
display: technology TFT active matrix
display: diagonal size 2.5in

audio input type none

flash memory: form factor memory stick
flash memory: storage capacity 8 MB

video input: still image format JPEG

video input: digital video format MPEG-1

lens system: optical zoom 3.6

Unstructured Text (Offer-1)

Panasonic Lumix DMC-FX07 digital camera [7.2 megapixel, 2.5”, 3.6x
optical zoom, LCD monitor]

Unstructured Text (Offer-2)

Panasonic DMC-FX07EB digital camera silver

Unstructured Text (Offer-3)

Lumix FXO7EB-S, 7.2 MP

Figure 1: Structured product record for ‘Panasonic
DMC-FXO07 digital camera’ and textual descriptions
from three matching offers.

gies for performing distributed joins and show how they can
all be implemented at the application level, without system
support. We also describe a dynamic data-dependent repar-
titioning strategy to handle data skew that allows for better
platform utilization and load balanced execution. Finally,
we show how nested parallelism can be leveraged to fully ex-
ploit the potential of a multi-core system. We show that by
allowing for this flexibility in the programming framework,
we can create a scalable matching system capable of yield-
ing over 100X speedup on millions of offers, taking matching
time from days down to minutes.

2. OFFER MATCHING

With the growth of Internet usage, how people shop for
goods has fundamentally changed. According to a recent
Nielsen study [20], over 77% of the U.S. population is now
online and 80% expected to make an online purchase in
the next six months. U.S. online retail spending surpassed
$140B in 2010 growing by 10% since 2009 [11] and according
to Forrester [10] is on track to surpass $250B by 2014. 80%
of online purchases start with search [10], representing a key
gateway into this huge market. Indeed, most major search

engines (and many e-commerce aggregators such as Price-
Grabber.com and Epinions.com) target this lucrative traffic
by providing e-commerce search services that allow users to
sift through extensive catalogs of product information and
compare sales offers from various merchants selling those
products. The success of these services is directly tied to the
quality and comprehensiveness of this catalog. As search re-
sults are typically represented by products, not offers, it is
critical that offers be matched correctly to the correspond-
ing products in order for users to see them. Products are
often the primary, if not the only, entry point into revenue-
generating offers, and every unmatched or mismatched offer
represents lost revenue potential.

The product information gathered from online merchants
consists of various attributes and their corresponding values,
stored in a structured record comprised of attribute (name,
value) pairs. Similarly, offers come from multiple merchants
and generally have very little structure. Fig. 1 shows part of
the structured record for Panasonic DMC-FXO07 digital cam-
era as well as three merchant offers for this product. The
figure illustrates the complexity of offer-to-product match-
ing. Product offers differ in detail and the attribute infor-
mation they provide. This impedance mismatch between
offers and products is difficult to tackle algorithmically, and
the industry often resorts to manually-created rule sets that
are difficult to maintain and brittle in execution. However,
there has been work that leverages the implicit structure in
offer descriptions to perform this matching algorithmically
[16]. The matching is robust in regards to data richness,
and it avoids domain-specific features that, in part, make
rule systems difficult to maintain. In this paper we imple-
ment a scalable parallel version of the algorithm presented
in [16]. We first describe the offer matching algorithm in
the following Sections 2.1 - 2.3 and then describe the de-
tails of the parallel implementation in Section 3, followed by
performance results in Section 4.

2.1 Offer matching algorithm overview

The offer-matching algorithm consists of two phases - (1)
offline training phase where the matching functions are learned,
and (2) the online matching phase where the offers are matched
to products using the matching functions learned in the of-
fline phase. We describe these two phases below:

Offline training phase: Figure 2 schematically shows
the offline training phase. In this phase, we first obtain a
training set of offers O and products P from merchants and
online aggregators respectively. The offers o € O are parsed
and annotated with product attributes and then paired with
products p € P in the Label phase. Then the model learning
algorithm (Match & Learn Models phase) receives a small
labeled training set of unstructured offers 6(O) and match-
ing products 6(P) and also mismatched products from 6(P),
one for every o € O as a set of negative examples. The sim-
ilarity feature vectors are computed to be used as features
for matching o to p. Along with their label (matched or mis-
matched), the feature vectors are used to train probabilistic
scorer. Since sequential training (performed once every 6
months) is efficient, in this paper, we do not consider the
problem of parallelizing this phase.

Online matching phase: During the online phase, we
are given a set of previously unseen offers O’, and the goal
is to identify the best matching products p € P for each
o € O'. The scoring function learned during the offline

/| category:
— Offers Learned ’/ Digital Product E
Title: Panasonic Lumix \\‘ DB Models /| cameras DB S
DMC-FX07B digital v | Topatt1: U =
camera silver R \L ! Model Q
Category: digital Offer titles Top att2: Product titles < Product attributes QO
camera . Category models Brand | | ~
\4 A4 ¥
Category: Digital
Cameras . Annotator Annotator Join on productID
Brand: Panasonic * v N7 \I,
ine: Lumi Q
:/:z::ICt[I)Il\jleC»ll;;Bn;g Annotated offers Annotated products) “§
o P Product attributes =
Color: silver L Q
aq \J/ \l, s
Category: Digital . =
Cameras N Join on categorylD + Join on categoryID + + =
IOP attlf DMC—FX(.NB top k attribute values top k attribute values N
op att2: Panasonic -
Brand: Panasonic \l/ i
Product line: Lumix Offers with top attributes Products with top attributes
Model: DMC-FX07B
Color: silver T | I
v W
Category: Digital . Group on top Grfmp on top %
Cameras attribute values attribute values 3
Top attl: DMC-FX078 J v 6
Top att2: Panasonic i
List<OfferObject> Grouped offers Grouped products o~
I J *
| f
- .5
\L \l’ /| Category: Digital é
gategory: Digital Join on categoryID + Match /| cameras v-s
ameras - . . /| Top attl: DMC- =
Top att1: DMC-FX078 / top k attribute values '§ \1/ ! | exos gs
Top att2: Panasonic \ \L ~ Top att2: Panasonic
List<OfferObject> | < Match Results List<OfferID, W
List<ProductObject> Match Groups ProductiD>
Figure 3: Online matching algorithm outline.
phase provides the probability of match for a pair (o, p).
Naively, we can find the best match by pairing o € O’ with
every p € P, calculating the pair match score, and choos-
ing the p* that results in the highest score. However, such
naive pairing will cost O(|P| x |O|) operations. Instead, [16],
proposed a staged blocking strategy. This involves first cat-
Merchants Aggregators egorizing the offer into a category node in the taxonomy,

‘1’_, RSS/FTP l,

crawlers
Product titles

and then further reducing the consideration set of potential
match products to those that agree on the value of the at-
tribute that contributes the largest weight, as learned by the
matcher for that category. We build on this blocking notion

Offer titles ‘L as described in the next section. Even with this pruning
o Label strategy the number of products and offers that need to be
= v matched is skewed across categories, so we need to further
Clas‘in‘ler optimize for this data skew.
Match &
Annotator Leam Models 2.2 Data skew in offer matching

v v

Annotated offers Category models

Figure 2: Offline training phase of the category
matching models. § corresponds to a subset of of-
fers/products used for learning the matching mod-
els.

During the matching process, offer strings need to be
scored against potential products that could match the offer
(the offer’s consideration set as mentioned in the previous
section). The baseline approach, selects potential products
that can match an offer to be all products in the category
the offer was classified to. However, this presents a lot of
wasteful work, as the number of products in a category can
be very large (10s of thousands), but the number of relevant
products is usually much smaller (10s or 100s). In addition,
there is a large skew in the distribution of the products and
offers across the categories as shown in Figure 4.

First, we define important attributes for a category to refer
to attributes that are used in the matching functions for that

1B Category: Laptop
N Computers
100M < | Grouped by: category
Number of groups: 1
Avg group size: 127M
10M l Ex: (Laptop)

Category: Laptop Computers
Grouped by: category + model
#

Number of groups: 745
1M Avg group size: 1,573

Ex: (Laptop, 2), (Laptop, 50) | manufacturer

Category: Laptop Computers
Grouped by: category + model # +

100K

10K

Number of comparisons

1K

100

Number of groups: 1.856
Avg group size: 224
Ex: (Laptop, 2, Asus), (Laptop, 50, Lenovo)

match group #

Figure 4: Matching job size distribution when grouping by category (black line), category and one top

attribute (dark gray line) and category and two top attributes (light gray line).

The captions show an

example for refining matching jobs in the ”Laptop Computers” category.

category that are learned in the offline matching phase (Fig-
ure 2). We also define top attributes as the set of attributes
with the highest weight out of the important attributes for
each category.

In order to create a more efficient matching strategy, we
first need to select only those products for a particular offer
that have common top attribute values with the offer. This
set of attributes is category-specific. Referring to the exam-
ple in Figure 1 for an offer in the “Digital Cameras” category
with a title “Panasonic DMC-FX07B digital camera silver”,
the consideration set for this offer should consist of prod-
ucts with brand name “Panasonic” because brand name is
the top attribute for the “Digital Cameras” category and not
”Nikon” or "Sony”. We can therefore group all the offers with
brand name “Panasonic” with all the products with brand
name “Panasonic” as potential match pairs and do matching
only on these subsets. Note that offers with the same values
for top attributes have the same consideration set.

As shown in Figure 4, the sizes of the matching jobs de-
crease with grouping by one and two top attributes as ex-
pected; however, we still see a large skew in the distribution
of the matching job size for different groups. Thus, grouping
by top attributes helps reduce the matching task size but in
some cases still presents a challenge for efficient parallel im-
plementation due to the data skew. Section 3 discusses how
we mitigated the data skew problem in our parallel matching
algorithm implementation. Also, by creating finer-grained
groups by grouping offers and products on two or more top
attributes we require top attribute value equality between of-
fers and products. With noisy dataset, this strategy results
in loss in recall. The granularity of grouping is a tunable pa-
rameter that can trade off between application performance
and accuracy and is also further discussed in Section 3.

2.3 Offer matching algorithm steps

Before describing the parallelization of the offer matching
algorithm, we first present the algorithm steps. The five

steps in the parallel matching algorithm are Get Data, An-
notate, Group, Join and Match. The steps are shown in
Figure 3 and described in detail below.

Get Data Phase - Retrieve the offer, product, and cate-
gory attribute data (Figure 3(1)).

First step in the matching process is to read the offer and
product data from databases (data from aggregators and
merchants is collected into databases independently from
the offer-matching application). The input to this step is
a list of categories we wish to do the matching on. The
result is a set of collections of offer titles, product titles and
attributes, and category attributes.

Annotate Phase - annotate the offers (i.e. get the at-
tribute values) from the offer and product titles, augment
product attributes from database with attributes from prod-
uct title (Figure 3(2)).

After obtaining the data we need for matching, we an-
notate the offer and product titles for attribute values. In
order to only extract the important attributes for the offer
from the Get Data phase we consult the category attribute
collection when annotating the offer titles to only keep val-
ues for important attributes in that category. For details of
offer title annotation, please see [16].

To annotate products, we similarly extract important at-
tribute values for product titles and then augment the prod-
uct attribute collection with the attributes extracted from
the titles by joining the two tables on the productID key
(shown on the right in Figure 3(2)). For attributes that
have both a value extracted from the title and the product
attribute database we keep the value with higher priority. In
our implementation, we can specify this priority depending
on the cleanliness of the product data.

The next two steps Group, Join in the original sequential
algorithm correspond to a single Join() operation. We join
the annotated offers and products on top attributes. Figure
3(3,4) show the parallel implementation of this phase and

Section 3 describes the implementation and the need for
separate Group() and Join() steps in detail.

Match Phase - match the offers and products within each
joined group (Figure 3(5)).

Finally, for each offer in each match group we compute a
matching score between the offer and all the products in the
consideration set and pick the maximum scoring product(s).
For details in the scoring function computation please refer
to [16]. This is the most time-intensive step of the algorithm
and we further optimize this step by utilizing the nested on-
chip parallelism of the cluster, as discussed in Section 3.

3. PARALLELIZATION OF MATCHING

Referring to the algorithm shown in Section 2 we describe
our parallelization stategy for each algorithm phase.

The input data (GetData, step 1) is currently obtained by
opening a connection to a SQL Server database and extract-
ing the data as a set of typed records on the client machine.
Since this is a sequential process, after parallelization this
remains the most expensive step. This step could also be
sped-up by storing the data in the cluster using a parallel
file system; we have not done so because we do not control
the input database. We do not include the cost of extraction
in our measurements.

Annotate, step 2, is completely parallel in the offer ti-
tles; there are millions of such records. The records are dis-
tributed by using hash-partitioning, a well-known random-

ized load-balancing technique pioneered by parallel databases.

For instance, DryadLINQ provides a primitive HashParti-
tion operator for this purpose, which spreads a dataset into
a specified number of partitions.

Three different Join computations are performed in this
step. Two of them in the Annotate step shown (left side of
Figure 3(2), marked with a +)) join a big table of annotated
offers and products with a small table of category attributes,
so they are implemented by broadcasting the category at-
tribute table to all partitions of the large offer and product
tables. This pattern is sometimes called Map-Join.

The third Join in the Annotate step (right side in Fig-
ure 3(2), marked by a X) is implemented using the regular
Join operator. This operation generates a distributed Join
implementation by hash-partitioning both input sets. This
is similar to the Join implementation used in Pig and other
MapReduce engines.

In Group, step 3, shown in Figure 3(3), we use a Group
Join operator to build pairs of lists: (offers, products). All
such pairs have distinct keys, so they can be processed in-
dependently.

This operation is essentially equivalent with the Pig CoGroup

operator; the outputs are groups of elements sharing the
same key of top attribute values.

The Join, step 4, shown in Figure 3(4), performs a stan-
dard distributed Join (using deterministic hash-distribution)
between the groups computed in step 4; the output is com-
posed of pairs of groups.

Steps 3-4 together constitute the (hand-optimized) imple-
mentation of a third type of Join operation (bottom right
of Figure 3, marked by a *). This is a Join operation be-
tween two large datasets with significant skew. The number
of offers and products per group is very skewed as discussed
in Section 2.2. These group Join operations could collec-
tively be replaced with a single Join call. However, due to
the data skew using the default Join implementation would

cause a handful of machines to compute for a long time,
keeping all other machines idle therefore severely underuti-
lizing the hardware resource. Figure 5(a) shows this com-
putation schedule.

The Match, step 5, shown in Figure 3(5), is composed of
three substeps: estimate data skew, dynamically repartition
data and compute the cartesian products. A Map operation
is used to estimate the work required for each pair of groups.
The large pairs (where |O;| x |P;| > t, for some threshold ¢,
say 1M) are dynamically repartitioned by splitting the offer
list O; into several smaller lists. This additional dynamic
data-dependent Map computation incurs a small additional
overhead (contributing to roughly 10% of the running time),
but leads to much better load balancing in the matching
phase, as we show in the next section. Figure 5(b) shows
the schedule of the load-balanced matching.

The Cartesian products of offers-to-product matches, are
computed and aggregated using an associative function (maz()
across all product scores for each offer). In consequence they
can be computed in a streaming fashion, without material-
izing all the |O;| x |P;| partial results. Finally, in order
to utilize the on-chip parallelism of the cluster, we further
parallelize the matching step by using the .NET threading
library; this is done by splitting each O; list into K dis-
joint lists, one for each core. Figure 6 illustrates this data
distribution used by the Matching algorithm.

EEEEEESS
] ‘Large work-item — break into two ‘
] |
[] ct1'cales
— Node 1

ol |
° |
3L c1lcalcs
I
QL. - Node 2
cic2 C3cCa
Node 3
ci'cz2'ca ctic2 c3'c4
Figure 6: Parallelization of the matching tasks

across nodes and cores. C* stands for core *. Dif-
ferent shades of gray correspond to different match
groups.

As discussed in Section 2.2 there is an interesting trade-
off between the work performed and the completeness of the
results. This trade-off can be controlled by the number of
top attributes used for matching. In terms of parallel perfor-
mance, using more attributes performs a finer-grained parti-
tioning of the work. Unfortunately, because the input data
is not clean, many attribute values can be incorrect or miss-
ing, and using their values for partitioning can decrease the
recall of our algorithm (i.e. the more attributes we group by,
the more we’re enforcing the strict equality between product
and offer attribute values thereby losing recall). However, of-
ten the dropped offers have weaker matches originally, since

erwood-245

erwood-221

il
NP

erwood-199

erwood-179

erwood-157

erwood-136

erwood-117

—
[WV]
=
Machines

90 100

erwood-095 -=€
erwood-068 5
nerwood-025 | E
erwood-001 = -
0 10 20 30
time (min)

(b)

Machines

time (min) ————>

T
20 30

0 10
time (min) >

Figure 5: Impact of application-level load balancing and scheduling. (a) shows unbalanced execution. The
execution time of the Matching phase is substantially reduced from (a)(no refinement) to (b)(splitting large
Cartesian products). (c) shows the ideal schedule of (b) with no cluster sharing.

they do not agree on top attribute values. Thus, this loss in
recall may be tolerable for cleaner input data sets.

4. PERFORMANCE RESULTS

We have implemented the distributed version of our match-
ing algorithm using the Dryad LINQ system. DryadLINQ [26]
is a compiler which parallelizes LINQ programs to run on
large computer clusters. The LINQ language (Language-
Integrated Query) is integrated within other .NET languages
(such as C# and Visual Basic); it provides to the program-
mer a set of data-parallel operators for manipulating data
collections. LINQ is similar to the SQL database language,
the LINQ collections being equivalent with SQL tables and
views. DryadLINQ generates code for the Dryad [14] dis-
tributed execution engine. Dryad offers a generalization of
the MapReduce programming model, supporting arbitrary
directed-acycling dataflow graphs. Furthermore, Dryad LINQ
enables the programmers to use nested parallelism, by paral-
lelizing the application both across the machines of a cluster
and across the cores of a machine. In this work we have used
DryadLINQ functionality which allows the user to override
the default multi-core parallelization, and we wrote custom
multi-threaded code. The core functionality of Dryad LINQ
has been emulated using basic MapReduce as a runtime
layer, in projects such as Pig [21] and FlumeJava [5].

We have evaluated our parallelized algorithm on a cluster
of 240 dual-CPU dual-core machines. Each of the machines
was running Windows Server 2003 64-bit. The machines
were equiped each with two 2.6GHz dual-core AMD Opteron
2218 HE CPUs, 16 GBytes of DDR2 random access memory,
and four 750 GByte SATA hard drives.

Our cluster is a shared resource cluster for running Dryad LINQ

jobs; resource requests of multiple competing jobs are arbi-
trated by a fair-scheduler [15]. The cluster was quite heavily
used during the period of measurements. The number of
machines granted to our jobs varied dynamically during job
execution, depending on the number of competing jobs, and

thus the running times exhibited large variances. In order to
report reproducible results we have built a tool which allows
us to factor out most of the influence of other jobs. This tool
receives as input the details of a job execution on the clus-
ter (e.g., information about the dataflow graph and process
running times) and then estimates the amount of time the
job would take if the cluster ran no other competing jobs.
This estimation is performed by essentially computing an
off-line greedy schedule of the job. All the cluster running
times reported in this paper are computed in this way. Let
us notice that we are not reporting idealized running times:
our schedules are still penalized by slow machines, failures
and include data transfer times and time lost to network
contention; and the work performed is the same in both in-
stances. The only thing that we are idealizing is the absence
of competing jobs.

Figures 5(b) and (c) show two example schedules. The
X axis denotes time, and the Y axis denotes the machines
in the cluster. Each horizontal line shows a machine be-
ing utilized. The color of the line denotes the phase of the
computation performed by the machine. Figure 5(b) shows
the actual schedule of a computation on a shared cluster;
many computations are delayed by machines being assigned
to other jobs. Figure 5(c) shows the schedule of the same
computation run on an idle cluster, where free machines are
available as soon as requested. Our tool produces the sched-
ule in (¢) by “compacting” the schedule from (b).

Speedup

Figure 7(a) shows the speedup of the parallel implemen-
tation over the serial code for various problem sizes. The
parallel runs use all 240 machines. The time for the largest
sequential job (7M offers) is only approximated, since our re-
sources did not allow for such long-running jobs. The largest
speedup is for 1 million and 4 million offers (the 1M and 4M
data points in Figure 7(a)) of over 100x over the sequential
implementation, reducing the matching time from 8 hours

10000 Sequential ~78h

44h
" Parallel 64
1000 BhOSm 74x

2h18m 106x

o 110x
25m
10 |

250K

Time (minutes)

number offers matched

(a) Speedup of the parallel offer matching over sequential
code for different data sizes

180

10 20 40 80 160 320 640 1280

#nodes

(b) Scaling of the parallel offer matching code. 1 node is one

dual-CPU dual-core node.

Figure 7: Performance of the parallel offer matching
algorithm. Speedup: (a), Scaling: (b)

to 4 minutes and from 44 hours to 25 minutes respectively.

Scaling

In Figure 7(b) we estimate the efficiency of our paral-
lelization by estimating the running time on clusters with
variable number of machines. For smaller data sets (250K
and 1M offers) the speedup decreases with increasing num-
ber of nodes, since not all machines can be kept busy. Large
problem sizes (4M and 7M), provide good scaling up to 1280
machines (5120 cores).

Load balancing
The schedule in Figure 5(a) shows the impact of skew in the
dataset on the cost of the matching step. Notice that the last
computation stage is dominated by a few machines process-
ing large Cartesian products. Using our load-balancing op-
timization which splits large products into several indepen-
dent products we obtain the schedule shown in Figure 5(b).
The additional cost of the splitting stage (10%) is more than

compensated by the reduced cost of matching (which reduces
the overall running time by 65%).

Multi-threading

In our experiments, the multi-threaded implementation of
the matching phase for one matching job yields a 3.5x im-
provement in performance using 8 threads for optimal uti-
lization of the processors. For each matching job, we fork
threads to compute subsets of offer-product matchings; each
node is assigned a set of matching jobs, thus we fork and join
the threads for each element in the matching job set. The
fork-join overhead reduces the overall performance gain from
multi-threading to 1.6 x. This overhead could be reduced by
using a fixed set of threads pulling from a task queue.

5. RELATED WORK

There has been a lot of interest in distributed data parallel
systems [4, 6, 8, 14, 1, 12, 26, 21, 5, 22] based on the MapRe-
duce paradigm as well as parallel databases. In this paper
we use the Dryad LINQ engine to effectively parallelize web-
scale data processing application of offer matching. The core
functionality of DryadLINQ has been emulated using basic
MapReduce as a runtime layer, in projects such as Pig [21]
and FlumeJava [5].

Efficient handling of data skew when performing large-
dataset joins has been addressed in the database community
by [9, 25, 23, 13]. In data-parallel MapReduce frameworks,
[17] implemented data skew handling on top of Hadoop [1].
Many large-scale applications exhibit large data skew (for
example [2] and [27]) and their efficient performance depends
highly on efficiently handling the skew.

There has been much work done to create efficient algo-
rithms in the field of record matching. For instance [18]
describes a simple classification strategy for matching struc-
tured records to structured records by first clustering the
records on common attributes. Our paper presents paral-
lelization techniques described that would also apply to this
structured record matching technique if the data exhibited
significant skew.

6. CONCLUSION

This paper presents a detailed implementation of a large-
scale data processing application using an example MapRe-
duce framewok of DryadLINQ. While we have focused on
the e-commerce problem of offer matching, we believe that
the lessons learned are applicable in a wide variety of ap-
plications that exhibit large data skew such as data cube
computation and botnet detection ([2] and [27]) as well as
other offer matching approaches such as [19, 7, 3, 24, 18].

In particular, we have learned that an important feature of
the programming language used for programming large-scale
systems is to contain a mix of both high-level and low-level
computation and data manipulation primitives. In our im-
plementation we used both high-level primitives to express
our computation and also hand-optimized the application
using low-level primitives to implement dynamic data repar-
titioning and multi-core threading to mitigate the data skew
of our input dataset and to fully utilize the parallel hardware
of the cluster. Without the low-level flexible programming
primitives to handle data skew in our application, the per-
formance of the offer matching application would suffer from

a very unbalanced execution and would result in at least a
3-fold increase in compute time.

In the future we expect that some of the techniques for au-
tomatically handling large data skew we have deployed are

incorporated into automatic optimizations.

In the mean-

time, using a MapReduce framework with both high-level
and low-level programming primitives is invaluable in deal-
ing with common issues such as data skew in large-scale data
processing applications.

7.

[10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

REFERENCES

Apache Hadoop.

P. B. R. R. Arnab Nandi, Cong Yu. Distributed cube
materialization on holistic measures. Hanover, Germany, 2011.
M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and

S. Fienberg. Adaptive name matching in information
integration. IEEE Intelligent Systems, 18:16-23, 2003.

R. Chaiken, P.-gA. L. Bob Jenkins, B. Ramsey, D. Shakib,

S. Weaver, and J. Zhou. SCOPE: Easy and efficient parallel
processing of massive data sets. February 2008.

C. Chambers, A. Raniwala, F. Perry, S. Adams, R. Henry,

R. Bradshaw, and Nathan. FlumeJava: Easy, efficient
data-parallel pipelines. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
2010.

L. Chu, H. Tang, T. Yang, and K. Shen. Optimizing data
aggregation for cluster-based internet services. In Symposium
on Principles and practice of parallel programming (PPoPP),
pages 119-130. ACM, 2003.

W. W. Cohen. Integration of heterogeneous databases without
common domains using queries based on textual similarity.
pages 201-212, 1998.

J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. San Francisco, CA, December 2004.
D. J. DeWitt, J. F. Naughton, D. A. Schneider, and

S. Seshadri. Practical skew handling in parallel joins. In
Proceedings of the 18th International Conference on Very
Large Data Bases, VLDB 92, pages 27—40, San Francisco, CA,
USA, 1992. Morgan Kaufmann Publishers Inc.

I. Forrester Research. http://techcrunch.com/2010/03/08/

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

A. Monge and C. Elkan. The field matching problem:
Algorithms and applications. In In Proceedings of the Second
International Conference on Knowledge Discovery and Data
Mining, pages 267—-270, 1996.

Nielsen. Global trends in online shopping: A nielsen global
consumer report. Technical report, June 2010.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig Latin: A not-so-foreign language for data processing. In
ACM SIGMOD International Conference on Management of
Data (Industrial Track) (SIGMOD), Vancouver, Canada, June
2008.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy. Hive — a petabyte scale data
warehouse using Hadoop. In International Conference on Data
Engineering (ICDE), pages 996-1005, Long Beach, California,
March 1-6, 2010 2010.

C. B. Walton, A. G. Dale, and R. M. Jenevein. A taxonomy
and performance model of data skew effects in parallel joins. In
Proceedings of the 17th International Conference on Very
Large Data Bases, VLDB ’91, pages 537-548, San Francisco,
CA, USA, 1991. Morgan Kaufmann Publishers Inc.

W. E. Winkler, W. E. Winkler, and N. P. Overview of record
linkage and current research directions. Technical report,
Bureau of the Census, 2006.

J. L. Wolf, D. M. Dias, P. S. Yu, and J. Turek. An effective
algorithm for parallelizing hash joins in the presence of data
skew. In Proceedings of the Seventh International Conference
on Data Engineering, pages 200-209, Washington, DC, USA,
1991. IEEE Computer Society.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing using a
high-level language. page 14, San Diego, CA, December 8-10
2008.

Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum.
Botgraph: large scale spamming botnet detection. In
Proceedings of the 6th USENIX symposium on Networked
systems design and implementation, pages 321-334, Berkeley,
CA, USA, 2009. USENIX Association.

forrester-forecast-online-retail-sales-will-grow-to-250-billion-by-2014/,

2011.

G. Fulgoni. The 2010 u.s. digital year in review. Technical
report, Comscore, 2010.

Y. Gu and R. Grossman. Sector and Sphere: The design and
implementation of a high performance data cloud.
Philosophical Transactions of the Royal Society,
367(1897):2429-2445, June 2009.

K. A. Hua and C. Lee. Handling data skew in multiprocessor
database computers using partition tuning. In Proceedings of
the 17th International Conference on Very Large Data Bases,
VLDB ’91, pages 525-535, San Francisco, CA, USA, 1991.
Morgan Kaufmann Publishers Inc.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed data-parallel programs from sequential building
blocks. In European Conference on Computer Systems
(EuroSys), pages 59-72, Lisbon, Portugal, March 21-23 2007.
also as MSR-TR-2006-140.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg. Quincy: fair scheduling for distributed
computing clusters. In J. N. Matthews and T. E. Anderson,
editors, ACM Symposium on Operating Systems Principles
(SOSP), pages 261-276, Big Sky, Montana, USA, 2009.

A. Kannan, I. E.Givoni, R. Agrawal, and A. Fuxman. Matching
unstructured product offers to structured product descriptions.
Technical Report MSR-TR-2010-172, Microsoft.

Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skew-resistant
parallel processing of feature-extracting scientific user-defined
functions. In Proceedings of the 1st ACM symposium on
Cloud computing, SoCC ’10, pages 75—86, New York, NY,
USA, 2010. ACM.

A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering
of high-dimensional data sets with application to reference
matching. In Proceedings of the sizth ACM SIGKDD
international conference on Knowledge discovery and data
mining, KDD ’00, pages 169-178, New York, NY, USA, 2000.
ACM.

