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Fay is a flexible platform for the efficient collection, processing, and analysis of software execution traces. Fay provides
dynamic tracing through use of runtime instrumentation and distributed aggregation within machines and across clusters. At
the lowest level, Fay can be safely extended with new tracing primitives, including even untrusted, fully-optimized machine
code, and Fay can be applied to running user-mode or kernel-mode software without compromising system stability. At
the highest level, Fay provides a unified, declarative means of specifying what events to trace, as well as the aggregation,
processing, and analysis of those events.

We have implemented the Fay tracing platform for Windows and integrated it with two powerful, expressive systems for
distributed programming. Our implementation is easy to use, can be applied to unmodified production systems, and provides
primitives that allow the overhead of tracing to be greatly reduced, compared to previous dynamic tracing platforms. To show
the generality of Fay tracing, we reimplement, in experiments, a range of tracing strategies and several custom mechanisms
from existing tracing frameworks.

Fay shows that modern techniques for high-level querying and data-parallel processing of disagreggated data streams
are well suited to comprehensive monitoring of software execution in distributed systems. Revisiting a lesson from the late
1960’s [Deutsch and Grant 1971], Fay also demonstrates the efficiency and extensibility benefits of using safe, statically-
verified machine code as the basis for low-level execution tracing. Finally, Fay establishes that, by automatically deriving
optimized query plans and code for safe extensions, the expressiveness and performance of high-level tracing queries can
equal or even surpass that of specialized monitoring tools.

Categories and Subject Descriptors: B.8 [Performance and Reliability]: General; C.2.4 [Distributed Systems]: Distributed
applications; C.4 [Performance of Systems]: Measurement techniques; C.4 [Performance of Systems]: Performance at-
tributes; D.4.8 [Performance]: Monitors; D.2.5 [Software Engineering]: Testing and Debugging—Tracing

General Terms: Design, Experimentation, Languages, Measurement, Performance

ACM Reference Format:
ACM Trans. Comput. Syst. V, N, Article A (January YYYY), 32 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Fay takes a new approach to the collection, processing, and analysis of software execution traces
within a machine or across a cluster. The dictionary definition of Fay is “a fairy,” as a noun, or “to
join tightly or closely,” as a verb. In our work, Fay is a comprehensive tracing platform that provides
both expressive means for querying software behavior and also the mechanisms for the efficient
execution of those queries. Our Fay platform implementation shows the appeal of the approach and
can be applied to live, unmodified production systems running current x86-64 versions of Windows.
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At its foundation, Fay provides highly-flexible, efficient mechanisms for the inline generation
and general processing of trace events, via dynamic instrumentation and safe machine-code exe-
cution. These mechanisms allow pervasive, high-frequency tracing of functions in both kernel and
user-mode address spaces to be applied dynamically, to executing binaries, without interruption in
service. At the point of each trace event generation, Fay safely allows custom processing of event
data and computation of arbitrary summaries of system state. Through safe execution of native ma-
chine code and through inline code invocation (not using hardware traps), Fay provides primitives
with an order-of-magnitude less overhead than those of DTrace or SystemTap [Cantrill et al. 2004;
Prasad et al. 2005].

At its topmost level, Fay provides a high-level interface to systems tracing where runtime behavior
of software is modeled as a distributed, dynamically-generated dataset, and trace collection and
analysis is modeled as a data-parallel computation on that dataset. This query interface provides a
flexible, unified means for specifying large-scale tracing of distributed systems. High-level queries
also allow the Fay platform to automatically optimize trace event collection and analysis in ways
that often greatly reduce overhead.

Below is an example of a complete high-level Fay query that specifies both what to trace and also
how to process and combine trace events from different CPUs, threads, and machines:

from io in cluster.Function("iolib!Read")
where io.time < Now.AddMinutes(5)
let size = io.GetArg(2) // request size in bytes
group io by size/1024 into g
select new { sizeInKilobytes = g.Key,

countOfReadIOs = g.Count() };

This query will return, for an entire cluster of machines, an aggregate view over 5 minutes of the
read sizes seen in a module iolib, for all uses of that module in user-mode or in the kernel. In
our Fay implementation, such declarative queries are written in a form of LINQ [Marguerie et al.
2008]. From these queries, Fay automatically derives efficient code for distributed query execution,
optimizing for factors such as early trace data aggregation and reduced network communication.

Fay can also be accessed through other, more traditional means. In particular, in our imple-
mentation, Fay can be used through scripts in the PowerShell system administration scripting lan-
guage [Stanek 2009], as well as directly through standard command-line tools. However it is used,
Fay retains the best features of prior tracing systems, such as efficient trace event collection, low
overhead—proportional to tracing activity, and zero by default—and stateful probes that can pro-
cess event data directly at a tracepoint. Fay also provides strong safety guarantees that allow probes
to be extended in novel ways with new, high-performance primitives.

1.1. Implementation and Experience
Fay has been implemented for the current x86-64 variants of Windows. However, the Fay approach
is generally applicable, and could be used for distributed software execution tracing on most op-
erating systems platforms. In particular, a Fay implementation for Linux should be achievable by
modifying existing mechanisms such as Ftrace [Rostedt 2009], Native Client [Yee et al. 2010], and
the FlumeJava or Hadoop data-parallel execution frameworks [Apache ; Chambers et al. 2010].

Although the specifics will vary, any Fay implementation will have to overcome most of the
same challenges that we have addressed in our implementation for Windows. First, Fay must pre-
serve all the relevant software invariants—such as timing constraints, reentrancy and thread safety,
locking disciplines, custom calling conventions, paging and memory access controls, and the exe-
cution states of threads, processes, and the kernel—and these are often hard-to-enumerate, implicit
properties of systems platforms.

Specifically, Fay must correctly manage tracepoints and probes and reliably modify machine code
to invoke probes inline at tracepoints—which is made especially challenging by preemptive thread
scheduling and hardware concurrency [Ansel et al. 2011]. As described in Section 3, Fay meets
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these challenges with generally-applicable techniques that include machine-wide code-modification
barriers, non-reentrant dispatching, lock-free or thread-local state, and the use of time-limited, safe
machine code to prevent side effects. In particular, Fay offers the lesson that reliable machine-code
modification is a good basis for implementing platform mechanisms, as well as to install tracepoints.

Second, Fay must provide mechanisms for safe machine-code extensibility, in a manner that
balances tradeoffs between simplicity, performance, high assurance, applicability to legacy code,
compatibility with low-level runtime environments, debuggability, ease-of-use, etc. As described in
Section 3.3, the safety of our Fay extensions is based on XFI mechanisms, which are uniquely well
suited to low-level, kernel-mode machine code [Erlingsson et al. 2006a]. We have developed several
variants of XFI, over a number of years, and applied them to different purposes. Our experience is
that specializing mechanisms like XFI to the target application domain, and its constraints, results
in the best tradeoffs. Thus, Fay’s XFI variant is relatively simple, and is tuned for thread-local, run-
to-completion execution of newly-written, freshly ported, or synthesized Fay extensions, either in
user-mode processes or the kernel.

Third, as the last major hurdle, to efficiently support high-level queries, a Fay tracing plat-
form must correctly integrate with new or existing query languages and data-parallel execution
frameworks. In particular, Fay query-plan generation, optimizations, and task scheduling must cor-
rectly consider the difference between persistent, redundantly-stored trace event data and tracepoint-
generated data—which is available only at an online, ephemeral source, since a tracepoint’s thread,
process, or machine may halt at any time. Section 4.2 describes how our Fay implementation meets
this challenge, by using a simple, fixed policy for scheduling the processing of ephemeral trace
events, by using explicitly-flushed, constant-size (associative) arrays as the single abstraction for
their data, and by applying incremental-view-update techniques from databases to query planning
and optimization.

We have applied Fay tracing to a variety of execution monitoring tasks and our experience sug-
gests that Fay improves upon the expressiveness and efficiency of previous dynamic tracing plat-
forms, as well as of some custom tracing mechanisms. In particular, we have found no obstacles
to using data-parallel processing of high-level queries for distributed systems monitoring. Although
Fay query processing is disaggregated—collecting and partially analyzing trace events separately
on different CPU cores, user-mode processes, threads, and machines—in practice, Fay can combine
collected trace events into a sufficiently global view of software behavior to achieve the intended
monitoring goals. We have found no counterexamples, ill-suited to Fay tracing, in our review of the
execution tracing literature, in our searches of the public forums and repositories of popular tracing
platforms, or in our experiments using Fay tracing to reimplement a wide range of tracing strategies,
described in Section 5. Thus, while data-parallel processing is not a natural fit for all computations,
it seems well-suited to the mechanisms, strategies, and queries of distributed systems tracing.

Our experiences also confirm the benefits of extensibility through safe, statically-verified machine
code—benefits first identified four decades ago in the Informer profiler [Deutsch and Grant 1971].
Safe extensions are key to the flexibility of Fay tracing, since they allow any untrusted user to
utilize new, native-code tracing primitives without increased risk to system integrity or reliability.
As described in Section 4.2, they also enable practical use of high-level, declarative Fay tracing
queries, by allowing Fay to synthesize code for efficient, query-specific extensions that it can use
for early aggregation and processing in optimized Fay query plans.

In the rest of this paper we outline the motivation, design, and high-level interfaces of Fay tracing
and describe the details of its mechanisms. We report on benchmarks, measurements, and use cases
in order to establish the scalability, efficiency, and flexibility of Fay tracing and to show its benefits
to investigations of software behavior. In particular, we show that Fay tracing can replicate and
extend a variety of powerful, custom strategies used on existing distributed software monitoring
platforms.
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Fig. 1. Tracing of an operating system and a machine cluster, as implemented in FayLINQ. Stars represent tracepoints,
circles are probes, rounded rectangles are address spaces or modules, rectangles are machines, and pentagons denote final
aggregation and processing. Arrows show data flow, optimized for early data reduction within each module, process, or
machine; redundant copying for fault tolerance is not indicated.

2. GOALS AND LANGUAGE INTERFACES
Fay is motivated by an idealized model of software execution tracing for distributed systems, out-
lined in Figure 1. The goals can be summarized as follows: The tracing platform should allow arbi-
trary high-level, side-effect-free queries about any aspect of system behavior. At each tracepoint—
i.e., when the traced behavior occurs at runtime—the platform should allow arbitrary processing
across all current system state. Such general processing probes should be allowed to maintain state,
and used to perform early data reduction (such as filtering or aggregation) before emitting trace
events.

Ideally, tracing should incur low overhead when active and should have zero overhead when
turned off. The total overhead should be proportional to the frequency of tracepoints and to the
complexity of probe processing. Tracing should be optimized for efficiency, in particular by favoring
early data reduction and aggregation; this optimization should apply to all communication, including
that between probes, between traced modules, and between machines in the system. Finally, trace
events may be ephemeral, since software or hardware may fail at any time; however, once a trace
event has been captured, further trace processing should be lossless, and fault-tolerant.

To achieve these goals for Fay tracing, our implementation integrates with two high-level-
language platforms: PowerShell scripting [Stanek 2009] and the DryadLINQ system for distributed
computing [Yu et al. 2008]. Figure 2 and Figure 3 show examples of how Fay tracing can be speci-
fied on these platforms.
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$probe = {
process {
switch( $([Fay]::Tracepoint()) ) {
$([Fay]::Kernel("ExAllocate*"))
{ $count = $count + 1; }

}
}
end { Write-FayOutput $count; }

}
Get-FayTrace $probe -StopAfterMinutes 5 ‘

| select count ‘
| measure -Sum

Fig. 2. A Fay PowerShell script that counts the invocation of certain memory-allocation functions in a 5-minute interval,
on all CPUs of a Windows kernel. Here, $probe uses a switch to match tracepoints to awk-like processing (counting)
and specifies the output of aggregated data (the count). A separately-specified pipeline combines the outputs (into a final
sum).

cluster.Function(kernel, "ExAllocate*")
.Count(event => (event.time < Now.AddMinutes(5)));

Fig. 3. An example FayLINQ query to perform the same count as in Figure 2 across an entire cluster. From this, Fay can
generate optimized query plans and efficient code for local processing (counting) and hierarchical aggregation (summing).

FayLINQ is a high-level interface to Fay tracing that allows analysis of strongly-typed sequences
of distributed trace events. FayLINQ is implemented by extending DryadLINQ and derives its ex-
pressive programming model from Language INtegrated Queries, or LINQ [Marguerie et al. 2008].
FayLINQ’s programming model allows a flexible combination of object-oriented, imperative code
and high-level declarative data processing [Yu et al. 2009; Yu et al. 2008]. A FayLINQ query can
simultaneously express trace collection, trace event analysis, and even the persisting of trace event
logs.

FayLINQ queries operate on the entire dataset of all possible tracepoints, and their associated
system state, but hide the distributed nature of this dataset by executing as if it had been collected
to a central location. In practice, queries are synthesized into data-parallel computations that enable
tracing only at relevant tracepoints, and perform early data selection, filtering, and aggregation of
trace events. FayLINQ makes use of modified mechanisms from DryadLINQ—described in Sec-
tion 4.2—to handle query optimization, data distribution, and fault-tolerance [Yu et al. 2009; Yu
et al. 2008]. In particular, analysis and rewriting of the query plan allows FayLINQ to automati-
cally derive optimized code that runs within the finite space and time constraints of simple probe
processing, and can be used even in the operating system kernel.

There is little room for optimization in script-based tracing systems such as Fay PowerShell, or
the popular DTrace and SystemTap platforms [Cantrill et al. 2004; Prasad et al. 2005]. These script-
ing interfaces share inefficiencies that can also be seen in Figure 2. Trace events are generated by
executing imperative probes that are specified separately, in isolation from later processing, and this
barrier between event generation and analysis prevents most automatic optimizations. Furthermore,
by default, for final analysis, trace events must be collected in a fan-in fashion onto a single machine.

In comparison, FayLINQ is able to give the illusion of tracing a single system, through a unified,
coherent interface, even when multiple computers, kernels, or user-level processes are involved.
Only a few limitations remain, such as that tracing may slightly perturb timing, and that probes can
access only state in the address space they are tracing.

Fay tracing may sometimes be best done directly on the command line, or through a Power-
Shell script, despite the limited opportunity for optimization, In particular, PowerShell is part of
the standard Windows monitoring toolset, and is well suited to processing and analysis of object
sequences such as trace events [Stanek 2009]. Furthermore, PowerShell exposes Windows secure
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remote access features that allow Fay scripts to be executed even across machines in heterogeneous
administrative domains.

Even so, the benefits of FayLINQ over PowerShell are made clear by the example query of
Figure 3. This query shows how simple and intuitive tracing a cluster of machines can be with
FayLINQ—especially when compared against the more traditional script in Figure 2, which applies
to one machine only. Using FayLINQ, this query will also be executed in an efficient, optimized
fashion.

In particular, counts will be aggregated, per CPU, in each of the operating system kernels of the
cluster; per-machine counts will then be aggregated locally, persisted to disk for fault-tolerance and
finally aggregated in a tree-like fashion for a final query result.

3. FUNDAMENTAL MECHANISMS
At the core of Fay tracing are safe, efficient, and easily extensible mechanisms for tracing kernel
and user-mode software behavior within a single machine.

3.1. Tracing and Probing
The basis of the Fay platform is dynamic instrumentation that adds function tracing to user-level
processes or the operating system kernel. Fay instrumentation is minimally intrusive: only the first
machine-code instruction of a function is changed, temporarily, while that function is being traced.

Notably, Fay instrumentation uses inline invocations that avoid the overhead of hardware trap
instructions. However, such inline invocations, and their resulting state updates, are necessarily
confined to a single process, or to the kernel, forcing each address space to be traced separately.
Therefore, Fay treats even a single machine as a distributed system composed of many isolated
parts.

3.1.1. Tracepoints. Fay provides tracepoints at the entry, normal return, and exceptional exit of
the traced functions in a target address space. All Fay trace events are the result of such function
boundary tracing. Fay can also support asynchronous or time-based tracepoints, as long as they
eventually result in a call to an instrumentable function.

When a tracepoint is triggered at runtime, execution is transferred inline to the Fay dispatcher.
The dispatcher, in turn, invokes one or more probe functions, or probes, that have been associated
with the tracepoint. A probe may be associated with one or more tracepoints, and any number of
probe functions may be associated with each tracepoint. Further details of the Fay dispatcher are
described in Section 3.2 and illustrated in Figure 5.

To enable tracing of an address space, the base Fay platform module must be loaded into the
address space to be traced. This platform module then installs probes by loading probe modules into
the target address space.

3.1.2. Probe Modules. Fay probe modules are kernel drivers or user-mode libraries (DLLs). For
both FayLINQ and PowerShell, source-to-source translation is used to automatically generate com-
piled probe modules. (Our implementation uses the freely available, state-of-the-art optimizing
C/C++ compiler in the Windows Driver Kit [Microsoft Corp. 2010].)

Figure 4 outlines how Fay probe modules are used for tracing in the kernel address space. A high-
level query is evaluated and compiled into a safe probe module; then, that driver binary is installed
into the kernel. At a kernel function tracepoint, Fay instrumentation ensures that control is trans-
ferred to the Fay dispatcher, which invokes one or more probes at runtime. Finally the probe outputs
(partially) processed trace events for further aggregation and analysis. Probe modules are subject to
the standard Windows access control checks. In particular, only system administrators can trace the
kernel or other system address spaces, and kernel probe modules must be cryptographically signed
for the x86-64 platform. However, this is not enough: bad compiler setup, malicious input data, or
other factors might easily lead to the creation of a flawed probe that would impair system security
and reliability. Therefore, subsequent to their generation, probe module binaries are rewritten and
processed to establish that they can be safely loaded and used within the traced address space. This
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Fig. 4. Overview of how Fay makes use of probes when tracing the kernel address space. Visual representations are as in
Figure 1—e.g., the star is a tracepoint. Kernel arrows show probe module installation (going down), dynamic instrumentation
(going left), the dispatch of a tracepoint to a probe function (going right), as well as the flow of trace event data (going up).

processing is based on a variant of XFI: a Software-based Fault Isolation (SFI) technique that is
uniquely applicable to both kernel-mode and user-mode code [Wahbe et al. 1993; Yee et al. 2010;
Erlingsson et al. 2006a]. Section 3.3 gives the details of the simplified XFI mechanisms used in our
Fay platform.

Fay probe modules can be written from scratch, in C or C++, ported from legacy code, or even
hand-crafted in assembly code. Fay can also be extended with new computations or data structures,
similarly specified as low-level or native code. Such Fay probe extensions might, for example, in-
clude hash functions for summarizing state, or code for maintaining representative samples of data.
Extensions allow enhancing Fay with new primitives without any changes to the platform—and
can be used even from FayLINQ or other high-level queries. Extensions are compiled with probes,
and are subject to the same safety checks; therefore, they raise no additional reliability or security
concerns.

Fay resolves symbolic target-module references by making use of debug information emitted at
compile time for executable binaries. (Much the same is done in other tracing systems [Cantrill
et al. 2004; Prasad et al. 2005].) On the Windows platform, such “PDB files” are available, and
easily accessible through a public network service [Microsoft Corp. 2011c], for all components and
versions of Windows.

3.1.3. Probe Processing. When triggered at a tracepoint, a probe will typically perform selection,
filtering, and aggregation of trace data. For instance, a probe may count how often a function returns
with an error code, or collect a histogram of its argument values. However, probes are not limited to
these actions, they may perform arbitrary processing.

In particular, probes might summarize a large, dynamic data structure in the traced address space
using expensive pointer chasing—but do so only when certain, exceptional conditions hold true. Fay
probe extensions for such data traversal may even be compiled from the same code as is used in the
target system. Thus, Fay tracing can make it practical to perform valuable, deep tracing of software
corner cases, and to gather all their relevant system state and execution context when probes are
triggered.

Fay probes can invoke an accessor support routine to examine the state of the system. Multi-
ple accessors are available in a runtime library and can be used to obtain function arguments and
return values, the current CPU, process, and thread identity, CPU cycle counts, etc. A TryRead
accessor allows attempted reading from any memory address, and thereby arbitrary inspection of
the address space. All accessors are simple, and self-contained, in order to prevent probe activity
from perturbing the traced system.

3.1.4. Probe State. For maintaining summaries of system behavior, Fay provides each probe
module with its own local and global memories. This mutable state is respectively private to each
thread (or CPU, in the kernel), or global to each probe module. These two types of state allow effi-
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Fig. 5. Fay dynamic instrumentation of a function Foo, with five separate, safe probe functions invoked at its entry, return,
and exception tracepoints. Rounded rectangles show the relevant binary modules in the traced address space (the kernel, or a
user-mode process). Arrows indicate control flow, starting at the original call to Foo (no arrow is shown for the return to that
original call site). The lighter arrows show the nested call to Foo from the Fay dispatcher—via a trampoline that executes
Foo’s original first instruction and then jumps to its second instruction.

cient, lock-free, thread-local data maintenance, as well as communication between probe functions
in the same address space—globally across the CPUs and threads of the target system.

Both types of mutable probe state are of constant, fixed size, set at the start of tracing. However,
probes may at any time send a trace event with their collected data, and flush mutable state for reuse,
which alleviates the limitations of constant-size state. To reduce the frequency of such trace event
generation, probes can make use of space-efficient data structures (e.g., our Fay implementation
makes use of cuckoo hashtables [Erlingsson et al. 2006b]).

To initialize global and local state, probe modules can define special begin and end probe func-
tions, invoked at the start and end of tracing. These “begin” and “end” probe functions are also
invoked at thread creation and termination, e.g., to allow thread-local state to be captured into a
trace event for higher-level analysis.

In combination, the above mechanisms allow Fay probes to efficiently implement—from first
principles—tracing features such as predicated tracing, distributed aggregation, and speculative trac-
ing [Cantrill et al. 2004]. In addition, they make it easy to extend Fay tracing with new primitives,
such as sketches [Bhatia et al. 2008]. These features are exposed through the high-level Fay lan-
guage interfaces, and can be considered during both the optimization of Fay tracing queries and
during their execution. Section 5 describes some of our experiences implementing such extended
Fay tracing features.

3.1.5. Limitations of Fay Tracepoints and Probes. Compared to other popular, more mature tracing
platforms, our Fay implementation has some limitations that stem from its early stage of develop-
ment. While Fay tracing can be used for live, online execution monitoring (e.g., as in Figure 8), the
cluster-based version of FayLINQ is built on the batch-oriented Dryad runtime, which prevents it
from streaming query results (instead all results are delivered at once). Also, currently, users of Fay
tracing must manually choose between call and jmp dispatchers (described in the next section),
and whether trace events are logged to disk, first, or whether per-machine analysis happens in a
real-time, machine-local Fay aggregation process.

On the other hand, the Fay primitives in our implementation are fundamentally limited to
function-boundary tracing of binary modules for which debug information is available. Other trac-
ing platforms also rely on debug information to offer full functionality, and are applied mostly to
properly-compiled or system binaries. More important is Fay’s lack of support for tracing arbi-
trary instructions. However, although supported by both DTrace [Cantrill et al. 2004] and System-
Tap [Prasad et al. 2005], per-instruction tracing can affect system stability and is also fragile when
instructions or line numbers change, or are elided, as is common in optimized production code.
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Thus, this feature is not often used, and its omission should not greatly affect the utility of Fay
tracing.

To confirm that per-instruction tracing is rarely-used, we performed an extensive review of the
public discussion forums and available collections of tracing scripts and libraries for both DTrace
and SystemTap. The per-instruction tracing examples we could find either count the instructions ex-
ecuted by a process or a function [Eigler 2010], or monitor changes to a certain variable [SystemTap
]. This type of tracing is not likely to be common, since it requires extensive instrumentation and
incurs correspondingly high overhead. Its goals are more easily achieved using hardware perfor-
mance counters or memory tracepoints. Another per-instruction tracing application is the addition
of new debugging messages to already-compiled code [Strosaker ]; however, the same can also be
achieved by running under a debugger or, if recompilation is an option, by the addition of calls to
empty functions, which Fay could then trace. Therefore, we have no current plans to extend Fay
beyond function-boundary tracing.

Fay supports only disaggregated tracing, even within a single machine: Fay probes provide a
separate view of the activity in each address space, i.e., the kernel or each user-mode process.
These views are combined by higher-level Fay trace-event processing. Existing tracing platforms
such as DTrace [Cantrill et al. 2004] support imperative operations on per-machine shared state,
and use hardware-trap-based instrumentation to access this shared state from both the kernel and
any user-mode address space. We have considered (but decided against) adding Fay support for
machine-global probe state, accessible across all address spaces, implemented via memory mapping
or a software device driver. So far, the distributed nature of Fay tracing has made it sufficiently
convenient to get visibility into user-mode activity by combining trace events from user and kernel
address spaces.

3.2. Dispatching Tracepoints to Probes
Fay tracing uses inline invocations to a Fay probe dispatcher, through a call or jump instruction in-
serted directly into the target machine code. Some other platforms dynamically insert a kernel tran-
sition, or faulting instruction, to perform tracing [Cantrill et al. 2004; Prasad et al. 2005]. Compared
to this alternative, Fay inline tracing offers greater efficiency, by avoiding hardware traps; similarly,
the Ftrace facility recently added to Linux also uses inline tracing for kernel functions [Rostedt
2009].

Fay repurposes Windows hotpatching in a novel manner to modify the machine code at a function
entry point, so that control is transferred to the Fay probe dispatcher. Windows function hotpatch-
ing is an existing operating systems facility, designed to allow incorrect or insecure functions to
be replaced on a running system, without a reboot or process shutdown [Microsoft Corp. 2003].
Hotpatching performs reliable, atomic code modification with all CPUs in a well-defined state (e.g.,
not executing the code being hotpatched). Previously, hotpatching has been rarely used: since its
introduction in 2003, we are not aware of a generally-available software update from Microsoft that
makes use of hotpatching.

Fay uses the hotpatching mechanism to insert, at the start of functions, inline invocations to the
Fay probe dispatcher. This permitted, but unintended use of hotpatching allows Fay to be used for
the pervasive tracing of existing, unmodified production systems.

All currently supported Windows binaries are hotpatch enabled. Hotpatching constrains machine-
code at function entry: six unused bytes must be present before the function, and its first instruction
must be at least two bytes long, and be drawn from a small set of opcodes. Each binary must also
contain a number of hotpatch data slots for pointers to new function versions; a normal binary
module has only 31 such slots, while the kernel has 127. In Fay, these constraints on hotpatch
data slots do not limit the number of tracepoints: Fay tracing is scalable to an arbitrary number of
functions.

Figure 5 shows the machine code of a function Foo after Fay has used hotpatching to modify
Foo to enable its entry, return, and exceptional exit tracepoints. The first instruction of Foo has
been replaced with a two-byte instruction that jumps backwards by six bytes. At the six-bytes-
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Fig. 6. The layout of a traced address space, with a Fay probe XFI module. Probe functions may invoke only a restricted set
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memory of the current thread. A probe may attempt to read any memory address via a Fay accessor that prevents faults due
to invalid addresses. XFI safeguards the integrity of the execution stacks, privileged hardware registers, and other critical
host-address-space state.

earlier address, a new instruction has been written that calls the Fay dispatcher. The call is indirect,
through one of the hotpatch data slots of the target module being traced (this indirection allows
loading the Fay platform module anywhere in the 64-bit address space).

As Figure 5 indicates, upon entry the Fay dispatcher looks up a descriptor for the current tra-
cepoint (shown as t in the figure). Tracepoint descriptors control what probes are triggered and
provide the crucial first instruction that allows the dispatcher to call the traced function. Fay looks
up these descriptors in a space-efficient hashtable [Erlingsson et al. 2006b], and the use of a simpler
hashtable, with significantly more memory, could reduce the cost of this lookup. For threads not
being traced, the lookup and use of descriptors might even be eliminated by using a Fay dispatcher
with multiple entry points—one for each possible first instruction—since different preamble code
at each distinct entry point could instruct the Fay dispatcher how to emulate the effects of a traced
function’s first instruction before passing control to the rest of the function. Fay does not yet imple-
ment such elaborations, since we have found the current lookup efficient enough (about 40 cycles
in our measurements).

A Fay tracepoint descriptor contains lists of probe functions to be invoked, as well as other rel-
evant information—such as the global and local state to be used for each probe. Dispatching is
lock free, but runs with (most) interrupts disabled; descriptor updates are atomically applied at an
all-CPU synchronization barrier.

If the current thread is to be traced, the Fay dispatcher will invoke probe functions both before
and after the traced function as indicated in the tracepoint descriptor lists—subjecting the execution
of each probe to the necessary safety and reliability constraints.

The Fay dispatcher also invokes the traced function itself. For this, the dispatcher creates a new
stack frame with copies of the function’s arguments. Then, the dispatcher uses a pointer from the
tracepoint descriptor to transfer control to a function-specific, executable trampoline that contains
a copy of the traced function’s first instruction, followed by a direct jump to its second instruction.
At runtime, before invoking this trampoline, Fay also copies all of the function arguments from the
dispatcher’s invocation stack frame, to the new stack frame.

The Fay dispatcher also registers an exception handler routine, for capturing any exceptional exit
of the function being traced. Fay invokes exceptional exit probes when an exception is unwound
past this handler; once the probes have executed, Fay forwards the exception on to higher stack
frames.

Fay provides multiple dispatcher implementations whose performance and scalability differs.
In particular, depending on the traced function, Fay can save different sets of registers: functions
synthesized through whole-program optimizations require preserving all registers, while stable,
externally-accessible functions require saving only a small, non-volatile set of registers.

Figure 5 shows the slowest and most scalable version of the Fay dispatcher. This version hot-
patches a call instruction before the traced function. That call pushes Foo’s address on the
stack for descriptor lookup. This dispatcher is scalable since it requires only one hotpatch data slot
(out of the very limited number of slots). However, the call places a superfluous return address
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on the stack, which the dispatcher must eliminate before returning (at the /**/ comment). Unfortu-
nately, on modern CPU architectures, such stack manipulations can have an adverse performance
impact by disrupting dynamic branch prediction [Skadron et al. 1998]. Therefore, when only a lim-
ited number of functions are traced, Fay will use a faster dispatcher, where hotpatching places a
jmp instruction to a dispatch trampoline. Both dispatchers have low overheads; Section 5 compares
their performance.

3.3. Reliability and Safety
Reliability is the paramount goal of the Fay dispatcher and other Fay mechanisms; these must be
correct, and are designed and implemented defensively, with the goal of allowing target systems to
always make progress. In the worst case the Fay mechanisms fail gracefully. However, Fay relies
crucially on the safety of probe processing: to the rest of the system, probes must always appear
as (almost) side-effect-free, pure functions—whether written by hand, compiled in an unknown
environment, or even when crafted by a malicious attacker. To ensure probe safety, previous tracing
systems have used safe interpreters or trusted compilers [Cantrill et al. 2004; Prasad et al. 2005].

Fundamentally, Fay ensures probe safety through use of XFI: one of the recently-developed,
low-overhead SFI mechanisms that are suitable to x86-64 CPUs [Erlingsson et al. 2006a; Wahbe
et al. 1993; Yee et al. 2010]. XFI is the only SFI mechanism to be applicable even to machine
code that runs as part of privileged, low-level systems software. Thus, Fay can rely on XFI to
provide comprehensive constraints on machine code probes, including flexible access controls and
strong integrity guarantees, and yet allow probes to be utilized in any address space, including the
kernel. As in all SFI systems, safety is enforced through a combination of inline software guards
and static verification of machine code. Below, we outline the characteristics of the Fay variant of
XFI; more details about its underlying policies and mechanisms can be found in the original XFI
paper [Erlingsson et al. 2006a].

Like previous variants, Fay XFI is implemented using the Vulcan [Srivastava et al. 2001] binary
rewriting tool. However, Fay XFI aims for simplicity, and avoids complexities—such as “fastpath
guards” [Erlingsson et al. 2006a]—as long as doing so retains acceptable performance. Instead of
being fully inlined, XFI guards reside in separate functions, but are invoked inline with arguments
pushed on the stack. While slightly less efficient, this style leads to minimal code perturbation,
which both simplifies XFI rewriting and also facilities debugging and understanding of probe ma-
chine code.

Fay XFI is also customized to its task of enforcing safety properties for Fay probes. Figure 6
shows a Fay XFI probe module in a target address space (cf. Figure 1 in [Erlingsson et al. 2006a]).
Fay probes should be side-effect-free, and execute only for short periods—to completion, without
interruption, serially on each (hardware) thread—using only the fixed-size memory regions of their
local and global state, and making external invocations only to Fay accessor routines. Thus, upon
a memory access, Fay XFI memory-range guards need compare against only one thread-local and
one static region, and do not need to consult slowpath permission tables. XFI can also consult fixed
tables upon use of a software call gate.

Fay probes are not unmodified legacy code—they are either newly written, newly ported, or au-
tomatically generated. Therefore, Fay XFI does not allow arbitrary C, C++, or assembly code, but
imposes some restrictions on how probes are written. Fay probes may not use recursive code, dy-
namically allocate memory on the stack frame, or make use of function pointers or virtual methods;
these restrictions make XFI enforcement of control-flow integrity trivial, and also reduce the number
of stack-overflow guards necessary, by allowing worst-case stack usage to be computed statically.
Also, Fay probes may not use code that generates or handles exceptions, or use other stack context
saving functionality; such probe code would be very difficult to support at low levels of the kernel;
as a consequence, in the Fay version of XFI we have removed the XFI required host-system support.
Finally, Fay probes may not access stack memory through pointers, so probe code must be converted
to use thread-local probe state instead of stack-resident variables; this simplifies XFI rewriting and
verification, and eliminates the need for XFI allocation stacks. These restrictions do not prevent any
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functionality, and although they may result in greater porting efforts for some Fay probe extensions,
this is not onerous, since Fay probes necessarily execute relatively small amounts of code and this
code is often automatically generated.

Despite the above simplifications, Fay XFI still enforces all the safety properties of XFI [Er-
lingsson et al. 2006a]—for instance, constraining machine-code control flow, preventing use of
dangerous instructions, restricting memory access, and thwarting violations of stack integrity.

3.3.1. Thread-local Tracking for Reliability. To ensure reliability, the interactions between Fay and
the software it is tracing must always be benign. Thus, the operation of the Fay dispatcher, probes,
and accessors must be self-contained, since Fay’s invocation of an external subsystem might ad-
versely affect the integrity of that subsystem, or result in deadlock. For example, while Fay accessor
routines may read system state, they must never invoke system functions with negative side effects.

A thread that is performing Fay dispatching must be treated differently by both the Fay platform
and the system itself. In particular, Fay tracing must not be applied recursively, such as might happen
if Fay were used to trace system functions that are themselves used by code in a Fay accessor routine.
This scenario might happen, e.g., if Fay tracing was applied to mechanisms for trace event transport.

To prevent recursive tracing, Fay maintains a thread-local flag that is set only while a probe is
executing, and that is checked during dispatching. (In the kernel, a small amount of thread-local
storage is available in the CPU control block; in user mode, arbitrary thread-local storage is avail-
able.) A similar flag allows Fay to efficiently support thread-specific tracing: the common scenario
where some threads are traced, but not others. Depending on the state of these flags for the current
thread, the Fay dispatcher may skip all probes and invoke only the traced function. Fay keeps a
count of lost tracing opportunities due to the Fay dispatcher being invoked recursively on a flagged
thread.

Fay does not enforce any confidentiality policy: no secrets can be held from kernel probes. Even
so, Fay kernel probes are subject to an unusual form of memory access control. A probe may write
only to its global or local state, and may only read those regions when dereferencing a memory
address. In addition, probes may use a special TryRead accessor to try to read a value from any
(potentially invalid) memory address; this functionality can be used by probes that perform pointer
chasing, for example. The TryRead accessor sets a thread-local flag that changes pagefault be-
havior on invalid memory accesses and prevents the kernel from halting (Section 3.5 gives further
details on its implementation). However, Fay will prevent even TryRead from accessing the mem-
ory of hardware control registers, since such accesses could cause side effects.

Finally, probes must be prevented from executing too long. In the kernel, a special tracing probe
is added by Fay to one of the Windows kernel functions that handles timer interrupts, to detect
runaway probes. This special probe maintains state that allows it to detect if a hardware thread is
still running the same probe as at the previous timer interrupt—and will trigger an exception if a
Fay probe runs for too many timer interrupts in a row.

3.4. Transporting Trace Events
Fay uses Event Tracing for Windows, (ETW) [Park and Buch 2007] to collect and persist trace
events in a standard log format. ETW is a high-functionality Windows system mechanism that
provides general-purpose, structured definitions for trace events, efficient buffering of trace events,
support for real-time trace consumers as well as efficient persistent logging and access to tracelog
files, support for dynamic addition and removal of producers, consumers, and trace sessions, as well
as the automatic provisioning of timestamps and other metadata.

ETW tracing is lock free and writes trace events to CPU-local buffers. Also, ETW is lossless, in
that the number of outstanding buffers is dynamically adjusted to the rate of event generation—and
in the unlikely case that no buffer space is available, an accurate count of dropped events is still
provided. Finally, the standard, manifest-based ETW tracelog formats allows Fay trace events to be
consumed and processed by a wide range of utilities on the Windows platform.
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$probe = {
process {

$malloc = "ExAllocatePoolWithTag";
$pin = $($nt["POOL_TYPE.NonPagedPool"]);
switch( $([Fay]::Tracepoint()) )
{
$([Fay]::Kernel($malloc)) {
$pool = Get-FayArg 1;
$tag = Get-FayArg 3;
if ($pool -eq $($pin)) {
$counts[$tag] = $counts[$tag]+1;

}
}
$([Fay]::TickInSeconds(1)) {
Write-FayOutput $counts;

}
}

}
}
Get-FayTrace $probe -StopAfterMinutes 20 ‘

| select counts ‘
| foreach {($_.GetEnumerator() ‘

| sort -Property Value ‘
| select -Last 5
| ConvertTo-Hashtable)} ‘

| Out-UpdatingChart -BarType

Fig. 7. A Fay script that updates a bar chart once per second with the five most common types (or “tags”) used by memory
allocations of non-paged kernel memory.

3.5. Practical Deployment Issues
Our Fay implementation has been crafted to ensure that it can be installed even on production sys-
tems, without a reboot. In particular, we have carefully (and painfully) avoided dependencies on
system internals, and on features that vary across Windows versions. For this, our Fay implementa-
tion sometimes makes use of side-effect-free tracing of system functions such as in our support for
asynchronous tracepoints. In one case we had to change the behavior of Windows: Fay hotpatches
the kernel page fault handler with a new variant that throws an exception (instead of halting execu-
tion) when invalid kernel-mode addresses are accessed during execution of the TryRead accessor.

The use of Fay tracing is subject to some limitations. In particular, Fay requires that target binary
modules have been compiled with hotpatching support; while this holds true for binaries in Windows
and Microsoft server products, it is not the case for all software. Also, kernel tracing with the
more scalable Fay probe dispatcher will require rebooting with kernel debugging automatically
enabled; otherwise, PatchGuard [Microsoft Corp. 2006] will bugcheck Windows after detecting an
unexpected call instruction, which it disallows in machine-code hotpatches.

Finally, even for Windows system binaries, Fay is currently not able to trace variable-argument
functions—since the Fay dispatcher would then have to create a stack frame of unbounded size for
its invocation of the traced function.

4. LANGUAGES FOR FAY TRACING
We have integrated Fay with PowerShell to provide a traditional scripting interface to tracing, and
we have also built FayLINQ to provide a LINQ query interface and a declarative, data-parallel
approach to tracing distributed systems. Both these popular high-level language platforms provide
flexible, efficient means of specifying tracing, in a manner that feels natural—thereby removing the
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Fig. 8. Output of the Fay PowerShell script from Figure 7 that every second updates a visual histogram of the five most
common types (or “tags”) of memory allocations from non-paged kernel memory. The greatest number of memory alloca-
tions are of type ’NV’, indicating they are due to the NVidia display driver.

need to introduce a domain-specific language, as done in other dynamic tracing platforms [Cantrill
et al. 2004; Prasad et al. 2005].

To explore integration with languages and systems with streaming semantics, we have also
created, as a proof-of-concept, a single-machine, implementation which integrates Fay with the
StreamInsight [Microsoft Corp. 2012] streaming event processing engine. We describe this im-
plementation in Section 4.4. We have implemented several Fay support mechanisms that can be
utilized both in PowerShell and FayLINQ, since both are managed code platforms. In particular,
these provide for optimized compilation of probe modules, their installation into the kernel, or in-
jection into a user-mode process. These mechanisms also give access to debug information (from
PDBs) for currently executing software—e.g., to allow symbolic identification of tracepoints in a
target binary module, as well as the global variables, types, enums, etc., of that module. Finally,
these mechanisms allow real-time consumption of ETW trace events, and the custom, type-driven
unmarshalling of their contents.

4.1. Fay PowerShell Scripting
Here we give a brief outline of Fay PowerShell scripting. PowerShell is structured around cmdlets,
which are similar to awk scripts operating on streams of objects, and augmented with administration
and monitoring features. In PowerShell, Fay probes are just regular cmdlets, with a few changes in
semantics: begin{} blocks execute at the start of tracing, process{} executes at each trace-
point, variables such as $global:var live in global state, whereas regular variables are thread
local.

When used with Fay support cmdlets, such as Get-FayTrace, tracing scripts are converted
to C code, using source-to-source translation, and compiled and processed into binary XFI probe
modules. Fay makes use of partial evaluation to resolve symbolic reference in PowerShell scripts,
as well as to identify tracepoints and define a specialized probe function for each tracepoint. We
have used PowerShell mostly as a convenient means for ad hoc Fay tracing, like that in Figure 7.

4.2. FayLINQ Queries
FayLINQ integrates the fundamental Fay mechanisms with the LINQ language, as well as the opti-
mizations and large-scale data processing capabilities of DryadLINQ [Yu et al. 2008]. This combi-
nation allows users to write high-level queries to probe the behavior of a distributed system; these
queries trace all the computers in a cluster, and are also executed on the same set of computers.

DryadLINQ is a distributed query execution system built on top of the Dryad [Isard et al. 2007]
runtime. The core Dryad abstraction is a distributed coarse-grain dataflow graph, called a “job”. The
job is a directed acyclic graph; the vertices of the graph are arbitrary computation that communicate
with each other solely through the edges of the graph; the edges are called channels. Dryad executes
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job graphs reliably on a computer cluster. In most Dryad jobs the input vertices represent data
stored on some persistent medium (e.g., a disk). FayLINQ synthesizes Dryad jobs where the input
vertices are executables that insert probes into a running system and capture their outputs. The
output channels of the input vertices will transport the events generated by the probes.

DryadLINQ provides a high-level language layer on top of Dryad, by automatically translating
programs written in the .Net framework into Dryad graphs. More specifically, DryadLINQ trans-
lates queries written in LINQ [Marguerie et al. 2008] into Dryad jobs, while executing the impera-
tive fragments of the .Net programs as user-defined functions in each vertex. The core datatype of
LINQ is a collection of data values; the LINQ language contains a set of operations on collections.
The capabilities of LINQ computations are similar to those of relational algebra (filtering, transfor-
mation, aggregation, grouping, sorting, joining), but operate on a richer data model of collections of
arbitrary .Net objects.

On both a single machine, and on a cluster, the input data processed by FayLINQ is naturally
modeled as a concurrent set of trace event streams. Fay tracing generates multiple, disjoint streams
of ordered trace events, with a separate trace event stream output by each thread in each address
space (or each CPU core in the kernel). Therefore, FayLINQ tracing consists of the execution of
LINQ queries whose input is the unordered, merged collection composed by the union of these
ordered streams.

The FayLINQ compiler starts from a single, high-level query and generates an efficient set of
tracepoints, and code for Fay probes that perform extraction, processing, and early aggregation
of trace event data. FayLINQ also relies on DryadLINQ to produce optimized query plans and
processing code for both machine-local and cluster-level aggregation and analysis.

The example in Figure 9 helps explain how FayLINQ operates, and gives an overview of query
execution. In the query, kernelAllocations constrains the set of tracepoints to those at the
entry of the primary kernel memory allocation function—with the Function method operat-
ing like a filtering Where clause. Then, from each tracepoint, the query retrieves the time prop-
erty and the size of the allocation, which is the second argument of ExAllocatePool. Then,
allocIntervalSizePairs is used to collect, for each tracepoint, which period-length in-
terval it fell into, and integer log2 of its allocation size. These events are then grouped together
into results, and a separate count is made of each group where both the time and log2 alloca-
tion sizes are equal, with these triples output as strings. This final grouping applies to events from
all machines, and is implemented in two phases: first on each machine, and then across all cluster
machines.

Distributed tracing can be straightforwardly implemented by emitting trace events for each tra-
cepoint invocation and collecting and processing those events centrally. One approach would be to
use a flat, wide schema (the union of all possible output fields) to allow the same trace events to be
output at any probe and at any tracepoint. Probes may be very simple, and need only fill out fields
in the schema. Unfortunately, this is not a very viable strategy: flattened schemas lead to large trace
events, and the output of trace events at high-frequency tracepoints will incur significant load, which
may easily skew measurements or even swamp the system.

Instead of the above, naive implementation approach, FayLINQ performs a number of steps to
optimize the execution of queries like that in Figure 9. As a result, the execution of each query is split
in three different tiers, as shown in Figure 10. First, each probe executes in the context of a single
address space (i.e., the kernel or a user-mode process) and perform filtering, early aggregation, and
other processing that is best performed close to the generation of (ephemeral) events; for efficiency,
probe processing typically involves only lock-free state (e.g., hardware- or software-thread-local
memory). Second, each machine aggregates, performs initial joins, and persists the output data
from all address spaces and probes on the machine. Third, and finally, the cluster performs reliable
distributed processing to aggregate output data and perform final joins across all machines.
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// Get the disaggregated set of kernel allocation trace events.
var kernelAllocations =

cluster
.Function(kernel,"ExAllocatePool");

// For the next 10 minutes, map each allocation to a coarser period-based
// timeline of intervals and to log2 of the requested allocation size.
var allocIntervalSizePairs =

from event in kernelAllocations
where event.time < Now.AddMinutes(10)
let allocSize = event.GetArg(2) // NumberOfBytes
select new { interval = event.time/period,

size = log2(allocSize)) };

// Group allocations by interval and log2 of the size and count each group.
var results =

from pair in allocIntervalSizePairs
group pair by pair into reduction
select new { interval = reduction.Key.interval,

logsize = reduction.Key.size,
count = reduction.Count() };

// Map each interval/ log2size/count triple to a string for output.
var output =

results.Select( r => r.ToString() );

Fig. 9. A FayLINQ query that summarizes the rate of different-sized kernel memory allocation requests over 10 minutes.
The output indicates, for each period-length interval, how often allocation sizes of different magnitude were seen.

4.2.1. Generic Optimizations. First, FayLINQ performs basic DryadLINQ query optimizations,
like dead code removal, and moving filtering and selection to the leaves of the query plan—i.e.,
towards the source of trace event data, the tracepoints.

4.2.2. Early Aggregation. Next the query plan optimizer tries to move computations as early as
possible, and to push as much computation as possible into the Fay probe functions. The query
is optimized using a set of term-rewriting rules, shown in Figure 10. The rules push (parts of)
computations in front of “merge” operators; thus, instead of collecting events from all probes and
processing the resulting merged stream, the processing is moved ahead of the merge, and performed
on the data stream of each probe independently. Filtering and transformation are trivially moved,
since they operate on events independently (first two rewrite rules), while associative aggregation
(with or without grouping) can be partially pushed into the probes (last two rewrite rules). Many
aggregation operations (shown as A in the figure) can be written as a “map” function followed by
an associative aggregation. These functions are rewritten to perform the map phase and an initial
round of aggregation locally, followed by a final aggregation of the results across all probes. For
example, Count is the composition of a map tranforming each value to a constant 1, followed
by a Sum, so it is rewritten as a local Count followed by a global Sum. A similar observation
holds for aggregations that are applied after grouping values using GroupBy (denoted by GA in
Figure 10). A combination such as GroupBy(e => key(e)).Select(g => g.Count())
can be rewritten into a local GC phase, which only builds groups and aggregates locally at each
probe, followed by a data exchange and one (or more) global aggregations GR, which combine the
partial results. GC and GR are also called “combiner” and “reducer” in [Dean and Ghemawat 2010].
The DryadLINQ compiler already contains extensive optimizations and static analyses to cope with
such constructs [Yu et al. 2009]. We leverage these optimizations in FayLINQ.

For the query in Figure 9, nearly all work can be pushed into Fay probes at the query plan leaves.
The resulting query plan is shown in Figure 11; it spans both probes and cluster-level computation.
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Fig. 10. Term-rewriting from LINQ to Fay probes, with circles and arrows representing operators and data flow. The input
operation merges the trace events from tracepoints and performs user-specified computations on that merged stream. Term-
rewriting optimizations push operations closer to data sources. The first and second rewrite rules push filtering and selection
ahead of merging. The last rewrite rule transforms counting into a sum of partial counts; the third rule generalizes this last
one and rewrites aggregations on partial groups.

The dotted line marks the separation between Fay and DryadLINQ. Only the global aggregation and
the conversion of the output to strings are performed by DryadLINQ.

The code for the Fay probes is generated dynamically and shipped to the cluster as a job resource.
At job runtime the job input Dryad vertices perform the following actions: specialize, build and in-
stall the probes, then start a user-space loop to receive the ETW events generated by the probes. On
receipt of an ETW event, the probe data is extracted from the event and converted to the C# repre-
sentation used in the FayLINQ query, then it is writen as C# objects into the output Dryad channels,
where it flows through the rest of the DryadLINQ job pipeline using reliable Dryad channels. The
compiler statically infers the type of the payload of the ETW events, so it can generate very effi-
cient code for marshalling and unmarshalling the data into ETW events. The DryadLINQ part of the
query runs on the cluster, taking full advantage of the fault-tolerance, scheduling and optimizations
of the Dryad runtime, which is proven to scale to large clusters.

4.2.3. Probe Code Generation. As described above, the FayLINQ implementation optimizes the
query plan to move data filtering, transformation, and aggregation (including GroupBy-Aggregate)
from the LINQ query into Fay probes. Currently, the following LINQ statements can be executed by
Fay probes: Where, Select, Aggregate, and GroupBy—as well as the many special cases of
these operators, such as Sum, Count, Average, Distinct, Take, etc. Query parts that cannot
be executed by probes are executed by DryadLINQ, on the cluster. This includes the aggregates of
data from multiple machines—which, DryadLINQ will automatically perform in a tree-like fashion,
when that improves performance [Yu et al. 2009].

The probes treat the event source as a continuous, incrementally-updated stream. The query is in-
terpreted as a database view, and query evaluation is recast as an incremental view update, a problem
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Fig. 11. Optimized plan for the query in Figure 9. Symbols are as in Figure 10 and its legend. The first two S operations
compute allocIntervalSizePairs. The computation of results is synthesized as GC+GR. The final S computes
output.

Table I. Incremental implementations of LINQ operations.

LINQ operator C code for probes
Where(e => p(e)) if (!p(e)) return;

Select(e => f(e)) result = f(e);

Aggregate((x,y)=>f(x,y)) agg = f(agg, x)

GroupBy(e => k(e)) key = k(e);
.Select(g => g.Count()) v = hashLookup(key);

if (hashFull(key))
EmitAndClrHash();

hashUpdate(key, v+1);

well-known in the database literature [Gupta et al. 1993]. Fortunately, many of the natural opera-
tions on probe events (transformation, filtering and aggregation) are easily amenable to very efficient
implementations using incremental view updates. We will call them incremental implementations.

An operation can be moved into the probe only if three conditions can be met: (1) the operation
invokes user-defined code which can be translated to C, (2) the operation can be implemented in-
crementally and (3) the operation manipulates only data available locally to the probe. To elaborate:

(1) LINQ queries can invoke arbitrary user-defined code written in C#. However, we cannot ex-
pect to run arbitrary C# programs as part of a probe. We have implemented a C# to C syntax-
directed translator for a subset of C#. The allowed C# constructs are restricted to manipulating
only value types (basic types or structures), invoking static functions and using local values, or
lambda-expressions with a local context. If a construct does not satisfy these criteria, it cannot
be implemented as part of the probe, so it is executed in the user-level DryadLINQ computation.

(2) Next, incremental update code is generated for the LINQ operators which are implemented as
part of the probes. Table I shows pseudocode for the incremental translations of these operators.
The GroupBy operator is incrementalized only if it is immediately followed by a per-group
aggregation. The incremental version of GroupBy uses a cuckoo hashtable indexed with the
group key and storing the result of the aggregation. While Table I shows only an example us-
ing GroupBy/Count, the compiler supports arbitrary GroupBy/Aggregate combinations
(also called the “map-reduce pattern”). The hashtables are fixed-size (statically allocated); when
a hashtable is full, its contents are marshalled as an ETW event and it is cleared for reuse. A
second-level aggregation running at the user-level is responsible for “fixing” the partial aggre-
gates caused by a full hashtable.
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For the program in Figure 11 at each probe invocation, the time interval and logarithm of al-
location size are computed immediately and used to update counts in a hashtable. Each ETW
event contains as payload the complete contents of the cuckoo hashtable, an array of hashtable
entries. Each hashtable entry contains a key and a value. In this case the key is a C struct
with two fields: { int interval, int logsize }. The value is the integer count.

(3) Finally, an operation can only be implemented inside a probe if it manipulates information
computed by the probe or accessible in its address space. For example, an operation which
aggregates information across machines cannot be implemented entirely inside a probe. On the
other hand, some aggregations can processed completely within a probe, or on a single machine:
for example, all aggregations of groups which include the local machine as part of the key (such
aggregations do not access data from different machines).

The Fay probes will usually perform some aggregation. The results of the aggregation are period-
ically encapsulated in ETW events and flushed to the cluster-level aggregation pipeline. Normally
the aggregation results are flushed when the internal fixed-size hashtables are filled. However, the
user can control the message frequency by specifying that aggregated event statistics should be
flushed at least every k probe invocations.

4.3. Writing Complex Probes
While LINQ is powerful enough to express many interesting computations using events, we have
found the constraint (1) quite limiting: there are many useful C operations that have no counterpart
in C# (e.g., dereferencing a pointer). In order to exploit the full expressive power of the native probes
we have extended the system in two ways:

(1) We allow the LINQ computations to invoke the Fay accessor functions described in Sec-
tion 3.1.3. For example, the following LINQ query will find the processes that allocate most memory
on the cluster during the measurement interval:

cluster.Functions(‘‘ExAllocatePoolWithTag’’)
.Where(e => e.time < Now.AddMinutes(10))
.Select(e => new {

Machine = Fay.GetMachineID(),
PID = Fay.GetCurrentProcessID() })

.GroupBy(e => e)

.Select(g => new { key = g.Key, count = g.Count() })

.OrderByDescending(p => p.count)

.Take(10)

For this query the key used for indexing the hashtable is a tuple composed from the machine id
(the IP address) and the process id.

(2) We allow the user to supply additional hand-written C code in source files which are shipped
to the cluster as resources of the DryadLINQ computation. The C code is compiled, sandboxed
and linked to the probe by the FayLINQ input vertex prior to probe injection. The hand-written
C code can use private statically-allocated persistent state. The user is allowed to invoke these C
functions in the LINQ query as user-defined external functions. The static persistent state will
be translated by our compiler to references to a probe-allocated global state. We show an example
using this feature in Section 5.2.3 to implement statistical biased filtering using sketches.

4.4. Combining Fay and StreamInsight
FayLINQ leverages DryadLINQ for implementing efficient large-scale, fault tolerant data analysis
on the cluster. However, DryadLINQ is a batch computation engine, which assumes that the entire
data is available before starting the computation. As a consequence, while the FayLINQ probes gen-
erate data incrementally, the cluster-level part of the FayLINQ pipeline will block until all events
have been received and decoded. This behavior is undesirable for performing a long-running anal-
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Table II. The processes in the command shell case study, and
a count of how often they made the relevant system calls.
The two calling NtRequestWaitReplyPort did so about
equally often.

Windows System Call Count Callers

NtRequestWaitReplyPort 1,515,342 cmd.exe
conhost

NtAlpcSendWaitReceivePort 764,503 CSRSS
NtQueryInformationProcess 758,933 CSRSS
NtReplyWaitReceivePort 757,934 conhost

ysis where there is a need to inspect partial results on the fly. For such a case one should use a
streaming computation engine.

To evaluate the feasibility of such an implementation we have built a simple prototype which
integrates Fay with the Microsoft StreamInsight stream-processing engine [Microsoft Corp. 2012].
We have used a single-machine version of StreamInsight, since a distributed version was not avail-
able. The StreamInsight query language is also based on LINQ, but is richer than traditional LINQ,
supporting explicit temporal query operators. We have not yet built an integrated compiler to gen-
erate probe code from StreamInsight queries, but we foresee no fundamental obstacle for adapting
our LINQ compiler to this setting. StreamInsight is connected to the probes by the TraceInsight
software layer, which converts ETW event streams into StreamInsight event streams.

The availability of temporal query operators makes it much easier to express some types of
queries, for example, the ones involving explicit time sequencing of events. As an example, the tem-
poral joins [Gao et al. 2005] of Magpie [Barham et al. 2004] naturally map to the native StreamIn-
sight joins.

5. EXPERIMENTS AND EVALUATION
We have used Fay to diagnose system behavior on both single machines and on medium-size clus-
ters.

The utility of tracing and monitoring platforms has long since been established through both
published results as well as through previous anecdotal case studies. In many cases, such as in the
DTrace study in Section 9 of [Cantrill 2006], an issue is first raised by some external monitoring
tool that can be applied continuously to live production systems (such as an offline log analysis tool
or a low-overhead, statistical profiler [Burrows et al. 2000]). After such initial identification by other
means, dynamic tracing may be used for detailed, manual or semi-automatic behavior analysis. Even
then, tracing overheads may be too high for production systems, which often forces the issue to be
reproduced on non-critical systems before it can be analyzed.

Fay tracing can be efficient enough to overturn the above paradigm and allow continuous dynamic
tracing of live production systems, both before and during the analysis of any detected issues.

The rest of this section starts off with a Fay case study, presented in the informal, anecdotal
style of studies in the literature [Cantrill 2006]. Instead of enumerating further tracing applications,
we subsequently examine the flexibility of Fay tracing through the implementation of a variety of
different distributed software monitoring strategies. We then present experimental measurements
that establish the efficiency of the Fay tracing primitives, the scalability of the Fay platform to fully-
loaded clusters, and the benefits of FayLINQ query optimizations. We end by describing briefly how
some of the Fay technologies are used for monitoring SQL Server.

5.1. A Fay Performance-diagnosis Case Study
In some of our earliest Fay tracing experiments, we interactively used the Windows command shell
(cmd.exe) while observing a live, real-time chart of machine-wide system-call frequencies much like
that in Figure 8. Surprisingly, we observed very high frequencies for some tasks where we expected
to see few system calls, such as copy * NUL, type large.txt in a minimized window, or
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dir /S >NUL. We used Fay to investigate, as described below. To ensure reproducibility we used
only public information available outside Microsoft, such as public symbol files.

Outputting a 16 MB file of ASCII text in a minimized console window, using type, produced
around 3.75 million system calls, and was CPU bound for a significant amount of time. We used a
Fay query to aggregate by calling process, with Table II showing the dominant four system calls.
To see how these three processes interacted, we combined their system calls and arguments into a
single view, using a Fay query for a temporal join (see Section 5.2.4 and [Barham et al. 2004]). The
query showed a repeated pattern: cmd.exe blocks on a port request to conhost; then, conhost blocks
on a port request to the CSRSS service, which queries for process information; then, CSRSS blocks
on a port send to conhost, which unblocks it; finally, conhost makes a request back to cmd.exe,
unblocking it. These were clearly Windows Local Procedure Calls (LPC) spanning the three pro-
cesses [Russinovich et al. 2009].

Fay tracing showed some LPC rounds to be a result of the well-documented WriteConsole
function outputting a line (of 80 characters or less) to the console, However, we saw an even greater
number of LPC rounds caused by a function FileIsConsole. Using Fay to trace function ar-
guments, we could establish that, for every single line of output, the command shell would check
twice whether stdout was directed to the console window, or not, at the cost of two LPC rounds
and many context switches and system calls. Even more surprisingly, we saw those checks and LPC
rounds continue to occur when output was directed to a file—causing nearly a million system calls
when we used type to output our 16 MB text file to the special file NUL, for example.

We also used Fay tracing to investigate other frequent system calls, by collecting and count-
ing their distinct arguments, return values, and user-mode stack traces. This data indicated that the
calls to NtQueryInformationProcess in Table II were due to an internal CSRSS function,
IsConhost, inspecting an undocumented property (number 49) of the cmd.exe process. The ar-
guments and return values strongly indicated that CSRSS was retrieving this property, on every
LPC round, to verify that an intermediary conhost was still hosting the console for an originating
cmd.exe.

The above behavior also occurs for commands run in shell scripts, which often redirect large
amounts of output to files or to NUL. The most frequent system calls simply retrieve information
from the kernel, and user-mode processes can typically cache such data or read it via a “shared user
data page” (like the one exposed by the Windows kernel) that gives a read-only, up-to-date view of
data maintained elsewhere [Russinovich et al. 2009]. Thus, concretely, our Fay case study identified
potential reductions in the LPC rounds and context switches required for each line of command
shell output, which could eliminate most of the system calls in Table II. However, command shell
output is usually not a critical performance issue, and its implementation in Windows appears tuned
for reliability and simplicity; thus, while insightful, our observations are not sufficient to justify
immediate changes to user-mode or kernel-mode code.

5.2. Reimplementing Tracing Strategies
To stress the generality of Fay tracing, we reimplemented several existing, custom tracing strategies
on top of the Fay tracing platform. This reimplementation was done with minimal effort, by leverag-
ing Fay extensions and the high-level queries of FayLINQ. For evaluation we used two DryadLINQ
clusters: one with 12 machines with dual 2GHz AMD Opteron 246 processors and 8GB of memory,
and another with 128 machines with two 2.1GHz quad-core AMD Opteron 2373EE processors and
16GB of memory, both running Windows Server 2008 R2 Enterprise. Below we describe our imple-
mentations and (in some cases) the results of applying these monitoring strategies to our clusters.

5.2.1. Distributed Performance Counters. A common strategy for distributed monitoring is to
count the events generated across all machines of a cluster. Fay tracing can trivially implement
this strategy by applying the appropriate aggregation operations to any metrics on the trace events
available to probes on a single machine. Unlike traditional performance counters, Fay tracing allows
both user-controllable and efficient aggregation. For instance, with small changes, the query shown
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on page 2 can provide per-process, per-thread, and per-module statistics on all cluster activity in
both user-mode and the kernel. Such monitoring of memory allocation cannot be achieved with
traditional Windows performance counters, even on a single machine.

5.2.2. Automatic Analysis of Cluster Behavior. Several recent systems have applied automatic
machine-learning techniques to extract useful information from activity signatures collected across
a cluster [Marian et al. 2011; Woodard and Goldszmidt 2009]. We used FayLINQ to perform an
analysis similar to that of Fmeter [Marian et al. 2011] on our cluster, while it executed an unrelated
map-reduce workload (N-gram generation).

A single FayLINQ query sufficed to express the entire trace collection, the k-means clustering of
the collected traces, and the analysis of the traced workload using those machine-learning results.
This query collects periodic system-call-frequency histograms for the 402 system calls in the Win-
dows kernel, at a granularity of around 1 second. Collecting this information does not measurably
affect CPU utilization or machine performance, since FayLINQ synthesizes efficient, stateful kernel
probes that maintain counts per system call. The data-analysis part of the FayLINQ query reduced
the dataset dimensionality by applying k-means clustering (with k set to 5) on the histograms, using
published distributed machine-learning techniques for DryadLINQ [McSherry et al. 2011]. Then,
the FayLINQ query associated the workload activity in each period with the closest of the five
centroids resulting from the k-means clustering. Finally, the FayLINQ query output results into a
visualization tool to produce the chart in Figure 12.

Figure 12 shows activity on all machines, during execution of the map-reduce workload. All
activity periods are associated with their most similar k-means centroid, each of which has a unique
color and a (manually-added) label: io, idle, memory, cpu, or outlier. By comparing against the map-
reduce job plan, it can be seen that Figure 12 precisely captures the workload’s different processing
stages, as annotated at the bottom of the figure. Here, we compared against ground truth from
a known map-reduce job plan. However, in most cases, no such explicit plan exists, and similar
FayLINQ analysis could clarify the processing phases of even complex, opaque distributed services.

We can clearly see in the figure the first job stage (N-gram generation) running on 5 machines,
and the second stage running on 10 machines. (The last three stages of the reduction are very brief,
due to the large data reduction performed by the reducer stage; they are mostly I/O intensive.) The
ouliers are characterized by a large spike of invocations of the NtQueryPerformanceCounter
and NtYieldExecution system calls, which are not due to our application.

5.2.3. Predicated and Windowed Trace Processing. Some systems implement stateful or non-
deterministic tracing primitives that are not so easily expressed as pure, functional LINQ queries.
Nonetheless, FayLINQ can utilize Fay’s extensibility to provide such primitives and incorporate
their results into tracing queries. Concretely, users of FayLINQ can implement any probe extension
by providing an arbitrary C function, or makeing use of our library of such extensions.

Fay extensions can use optimized machine code to evaluate the state of a traced system in any
manner, whether complex or stateful. Thus, Fay can offer a efficient, general form of predication
and speculation, and support tracing that cannot even be expressed in language-restricted platforms
like DTrace [Cantrill et al. 2004]. To achieve similar functionality, other tracing platforms require
the evaluation code to be fully trusted—thereby leaving the traced system fully exposed to any
reliability and security issues in that code.

In particular, we have implemented Fay probe extension functions for Chopstix sketches [Bhatia
et al. 2008], to provide statistical, non-uniform sampling of low- and high-frequency events with low
overhead. FayLINQ sketching uses a hashtable of counters to ensure that trace events are output in
logarithmic proportion to the total number of occurrences. The sketching library is defined by the
following API:

struct State { int eventCount[SKETCHSIZE]; };
BOOLEAN sample(struct event, struct State*);
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Fig. 12. The result of FayLINQ analysis of cluster behavior while executing a map-reduce job. This 2D plot shows the
results of automatic k-means clustering of system-call histograms collected periodically across all machines. The X axis
shows time, machines are on the Y axis, and each period is colored according to its representative k-means centroid.

The sample function returns true for every event that should be propagated further. It uses
the State data structure to maintain the logarithmic counters. Here is an example FayLINQ query
using sketches to estimate the frequency of synchronization operations:

cluster.Function("NtWaitForSingleObject")
.Where(ev => ev.time < Now.AddMinutes(5))
.Where(e => sample(e, State))

We have also implemented probe extensions for temporal processing on trace event streams,
such as windowed (sliding or staggered) computations. For example, our simple MovingAverage
extension for computing moving averages is used in the below query, which emits all kernel memory
allocations that are 10 times larger than the current local moving average:

cluster.Function("ExAllocatePoolWithTag")
.Select(event => event.GetArg(2)) // allocation size
.Select(sizeArg => new {

average = MovingAverage(sizeArg, State),
size = sizeArg })

.Where(alloc => alloc.size > 10*alloc.average);

5.2.4. Tracking Work Across Distributed Systems. Several distributed monitoring platforms track
all the activity performed for work items, as those items are processed by different parts of the sys-
tem [Barham et al. 2004; Sigelman et al. 2010]. Often, such tracking is done via passive, distributed
monitoring, combined with “temporal joins” to infer dynamic dependencies and flow of work items.
Fay tracing can easily support such monitoring, by encoding temporal joins as recursive queries that
transitively propagate information, and by iterating to convergence. We have used FayLINQ to track
work in a distributed system by monitoring and correlating sent and received network packets, to
analyze the traffic matrix of DryadLINQ workloads.

5.2.5. Tracing Third-Party Modules. As described so far, Fay works for functions in modules for
which debug information (PDB files) is available and which are hotpatch enabled. However, we can
also use Fay to identify and trace interface functions in modules that lack hotpatch support and for
which we have no information beyond the binary itself.
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We do not attempt to find and understand internal functions of such black box modules, as this
would require reverse engineering the internal structure of a potentially complex software compo-
nent. Instead, we identify and trace the functions the module uses to interact with the rest of the
system. Such functions need to adhere to known system interfaces.

Such functionality can be useful when trying to determine whether a problem is being caused by
a black box module such as a network card driver. Users can profile how much time is spent in black
box module functions. They can log invocations of the black box module and check for correlations
with failure events. They can also check if the module leaks resources.

Some of the module’s interface functions are typically declared in static import and export tables.
These functions are readily identified by parsing the tables. However, many interface functions are
exposed by passing function pointer parameters in calls to other interface functions (registration
functions). Identifying and tracing such functions requires tracing the registration functions and
evaluating their function pointer parameters.

In order to do so, we ensure that Fay is running before the target module is loaded. We use
PsSetLoadImageNotifyRoutine to notify Fay when the target module is loaded and ready
to run. On systems where such a callback does not exist, it may still be possible to set a trace point
on an appropriate loader function. When Fay receives notification that the target module is loaded,
it places trace points on the module’s initialization function (DriverEntry for Windows drivers) and
on all registration functions in the module’s import list. Each of the system’s registration functions
is traced with a separate probe function that is aware of the semantics of the registration function.
The probe function identifies the relevant function pointer parameters of the registration function
and replaces them with pointers to Fay wrapper functions, which invoke entry and exit probes in
addition to calling the interface function. We implemented this mechanism entirely as a collection
of Fay probes without requiring modifications to the core system.

We have prototyped this mechanism for various Windows driver models, including NDIS network
card drivers and file system filter drivers and used Fay to answer questions such as: “How many
network packets has the network card forwarded to Windows?”, “How many CPU cycles are spent
in the anti-virus file system filter driver on each file system access?”, and “How much CPU time is
spent inside a particular driver?” Beyond Windows drivers, we have also applied this mechanism to
Win32 applications.

5.2.6. Tracing Across Software Abstractions. We have used Fay to explore the timer interfaces in
Windows and their use by applications. In a previous study of Windows timers [Peter et al. 2008],
traces were obtained by adding instrumentation directly into the source code. This approach can be
very time consuming and error prone. It requires searching for the right tracepoints in a large and
complex code base, resolving potential header file and linker conflicts, compiling and deploying a
kernel and correcting bugs that might have been introduced by the instrumentation code. All this
may have to be done repeatedly and for a number of trace points. Comparable Fay scripts can often
be written in a matter of minutes.

Starting with the low-level, kernel timer interfaces KeSetTimer, KeSetTimerEx, and
KeCancelTimer, we used FayLINQ to trace timer usage. For each use, we grouped by return
addresses on the call stack and sorted to identify common callers, thereby identifying the small
number of modules and functions that are the primary users of KeSetTimer, etc. We then iter-
ated, by creating a larger, recursive FayLINQ query, predicated to generate trace events only in cer-
tain contexts, and discovered 13 sets of timer interfaces in Windows, such as ZwUserSetTimer.
Close, manual inspection revealed that those interfaces were based on five separate timer wheel
implementations [Varghese and Lauck 1997].

Each time, the modifications to the Fay script were trivial: We simply added the newly discovered
timer interface functions to the list of functions we wanted to trace. Achieving the same result by
modifying the source code would have required significantly more time.
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Table III. Overhead in CPU cycles per call to a traced
function. Here, km is kernel mode, um is user mode,
and deep builds a 20-deep stack before each call. Fay
dispatches using inline call or jmp instructions; other
platforms trap to the kernel.

Solaris OS X Fedora
Experiment Fay DTrace DTrace STap
km 220 1717 1805 1129
um call 197 1557 2565 9009
um jmp 155
um call deep 431 1683 2813 9384
um jmp deep 268

Table IV. Slowdown due to XFI for three benchmarks. When compared
with the original version of XFI from [Erlingsson et al. 2006a], the Fay
imlpementation is much simpler, at the expense of larger overheads.

MD5 lld hotlist
Measured Fay XFI slowdown 184% 552% 1387%
XFI slowdown from [Erlingsson et al. 2006a] 101% 346% 798%

5.3. Performance Evaluation
To assess the efficiency and scalability of our Fay implementation, we measured the performance of
Fay tracing and its mechanisms for instrumentation, inline dispatching, and safe probe execution.
The experiments ran on an iMac with a 3.06GHz Intel E7600 CPU and 8GB of RAM. We configured
this machine to run 64-bit versions of Windows 7 Enterprise, Mac OS X v10.6, Fedora 15 Linux
(kernel version 2.6.40-4.fc15), and Oracle Solaris 11 Express, in order to directly compare Fay
tracing against DTrace, on two platforms, and against SystemTap (version 1.5/0.152) on Linux.

5.3.1. Microbenchmarks. To measure the cost of dispatching and executing an empty probe, we
created a user-mode microbenchmark that contains an empty function foo, which it calls in a tight
loop. We measured its running time both with, and without, Fay tracing of foo using an empty
probe. We also created a microbenchmark that invokes a trivial system call in a tight loop, and
where we traced the kernel-mode system call handler. (We used the getpid system call, except on
Windows where we used NtQuerySystemInformationwith an invalid parameter to minimize
the work it performed.)

We also wanted to measure the effects of branch-misprediction caused by the stack manipulation
of the Fay call dispatcher (see Section 3.2). Therefore, we created variants of the microbench-
marks that call foo via a sequence of 20 nested functions—forcing 20 extra stack frames to be
unwound at each foo tracepoint.

Table III shows the results of our microbenchmarks, with time measurements converted to CPU
cycle counts. Fay takes around 200 cycles per call and, as expected, dispatching using jmp is no-
ticeably faster than Fay call dispatcher. If a thread is not being traced, this work can be cut in
half, and the Fay call dispatcher adds only about 107 cycles per call. In both of these cases,
the hashtable lookup of tracepoint descriptors accounts for roughly 40 cycles. The experiments
for DTrace and SystemTap were run using function boundary tracing and per-CPU collection and
aggregation. Compared to Fay, the other tracing platforms generally required a bit less than an
order-of-magnitude more cycles.

Next, we compare the execution time of three benchmark probes with and without XFI rewriting,
summarizing the results in Table IV. This experiment replicates parts of Table 1 in [Erlingsson et al.
2006a] (slowpath with read and write protection). Our overhead is larger than that in [Erlingsson
et al. 2006a], which is not surprising, since we targeted simplicity in our implementation. How-
ever, Fay XFI performance still compares favorably to that of safe interpreters like those used in
DTrace [Romer et al. 1996].
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Table V. Instrumenting all kernel functions to test scala-
bility.

Solaris OS X
Fay DTrace DTrace

Traced functions 8001 31998 9341
Function calls (millions) 60 253 306
Running time w/tracing 28.0 103.2 149.6
Slowdown 2.8x 17.2x 26.7x

5.3.2. Scalability and Impact of Optimizations. We have used Fay to trace all the 8,001 hotpatch-
able functions in the Windows kernel and increment a per-CPU counter at each tracepoint, to count
the total kernel function invocations. Such tracing does not occur often, but can be useful. An ex-
ample application, that has seen practical use in other tracing platforms, is the tracing of all kernel
activity due to a specific kernel module, such as a network driver, or a specific interrupt handler [Ei-
gler 2010], and the generation of function call graphs for later visualization [Eclipse ].

Table V displays the results of tracing a workload that copied all the RFC text files between
ramdisk directories, deleted the new copies, and repeated this a fixed number of times. Fay scales
very well, and using it to trace the vast majority of Windows kernel functions leaves the machine
perfectly responsive and about 2.8 times slower on a benchmark that spends 75% of its time ex-
ecuting kernel code. Notably, the scale of this experiment creates a worst-case scenario for Fay
performance: the Fay call dispatcher adds an extra stack frame on every kernel function invoca-
tion, and suffers a branch-prediction miss on every function return.

The slowdown factors for DTrace are significantly higher, on both Solaris and Mac OS X. How-
ever, slowdown factors are not directly comparable, since Fay and DTrace are instrumenting differ-
ent operating systems. Trying to repeat the experiment with SystemTap resulted in a hung Linux
kernel, apparently due to a long-standing, well-known SystemTap bug [SystemTap 2006].

We tested the scalability, robustness, and optimizations of Fay tracing by utilizing our 128-
machine, 1024-core cluster for a benchmark that makes 50 million memory allocations per machine.
In the benchmark, each thread allocates and clears 10 heap-memory regions, of a random size be-
tween 1 byte and 16 kilobytes, yields with a Sleep(0), clears and frees the 10 regions, and then
loops. We measured all configurations of partitioning per-machine work over 1, 2, 5, or 10 processes
and 1, 5, 10, 50, 100, 500, or 1000 concurrent threads in each process. These configurations ran on
the entire, dedicated cluster, spreading 6.4 billion allocations between 128 to 1,280,000 threads,
each at 100% CPU utilization when running. The benchmark took between 30 seconds and 4 min-
utes to run, depending on the configuration—not counting unpredictable delays and high variance
caused by the cluster’s job scheduler.

Using a FayLINQ query to measure total allocated memory added an overhead of 1% to 11%
(mean 7.8%, std.dev. 3.8%) to the benchmark running time. The numbers matched our expectation:
per allocation, the benchmark spent approximately a couple of thousand cycles, to which Fay tracing
added a couple of hundred cycles, as per Figure III—but, as the number of processes and threads
grew, increased context switches and other costs started masking some of Fay’s overhead. The time
to initialize tracing, and install Fay probes, grew as processes increased from 1 to 10, going from 1.5
to 7 seconds. Whether or not Fay tracing was enabled, the benchmark had similar variance in CPU
time (mean std.dev. 2%, max std.dev. 6%) and wall-clock time (mean std.dev. 10%, max std.dev.
33%), both per-process and per-thread.

We exercised the fault-tolerance of Fay tracing by randomly killing threads, processes, or ma-
chines running the benchmark. When a thread dies, all its thread-local Fay probe state is lost, if it
has not already been sent as a trace event. Machine-local Fay aggregation continued unimpeded by
failure of benchmark threads or processes. Thus, the results of our FayLINQ query were perturbed
in proportion to our violence. In addition, the data lost for any thread could be bounded by hav-
ing Fay probes periodically send off their data as ETW trace events. For our benchmark FayLINQ
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query, probe state was sent as trace events every 100 memory allocations, at the cost of 1% extra
Fay tracing overhead.

In the limit, a trace event might need to be sent at every tracepoint invocation, if the work of a
tracing query was completely unsuited to Fay probe processing. To assess the benefits of early aggre-
gation and FayLINQ optimizations, we modified our benchmark to measure such high-frequency
trace events. With nearly half-a-million Fay trace events a second, and no probe processing, the
benchmark’s tracing overhead increased to between 5% and 163% (average 67%, std.dev. 45%).
However, most of those trace events were lost, and not accounted for in the result of our FayLINQ
query.

These lost trace events were surprising, since our Fay implementation minimizes the risk of data
loss, both by dynamically tuning ETW buffer size, and also by running time-critical Fay activity
like trace-event processing on Windows threads with high enough priority. Upon inspection, we
discovered that the real-time, machine-local FayLINQ aggregation process that converts ETW trace
events to .Net objects—rather slowly, on a single thread—was completely unable to handle the high
event rate. FayLINQ can be manually directed to stream trace events directly to disk, into ETW log
files, processed by later, batch-processing parts of the query plan. We attempted this next, but failed
again: each ETW log file record is about 100 bytes, which at 50 million events, in less than four
minutes, exceeded our disk bandwidth. Even though consuming data at high rates is intrinsically
difficult, these results clearly indicated that FayLINQ was lacking in its support for high-event-rate
tracing. So, we enhanced Fay with a custom, real-time ETW consumer thread that efficiently streams
just the Fay payload of ETW events (4 bytes in our benchmark) directly to disk. After this, FayLINQ
could return correct query results, by generating a plan that processes the disk files subsequent to
the benchmark run.

To further evaluate the benefits of FayLINQ query-plan optimizations, we reran the experiment
from Section 5.2.2 with the term-rewriting in Figure 10 turned off. While Fay tracing previously
had no measurable performance effects, unoptimized tracing significantly increased the workload
completion time, e.g., due to the addition of (a near-constant) 10% of CPU time being spent on
kernel-mode trace event processing. Also, the lack of early-aggregation optimizations lead to a
high event rate (more than 100,000 events/second, for some phases of the workload). In this case
several times more data was received and processed at the higher-levels of the FayLINQ aggregation
pipeline.

5.4. XE Dynamic tracing in Microsoft SQL Server
SQL Server comes with a built-in tracing infrastructure called extended events (XE)[Microsoft Corp.
2011b]. XE offer a static list of tracepoints and an API allowing users to dynamically turn on and
off instrumentation at any tracepoint from the static list.

For example, while troubleshooting performance in one installation, inspection of the SQL Server
logs showed numerous error messages about an attempt to acquire a latch that had timed out and
failed. Latches are low-level synchronization primitives used in SQL Server to protect certain in-
memory structures such as data pages [Microsoft Corp. 2011a]. The information in the error logs
indicated that a thread had timed out trying to acquire an exclusive buffer latch because another
thread was holding a shared latch for a long time. This was a recurring problem, and identifying the
thread that was holding the shared latch was the logical next step.

The standard procedure for diagnosing such problems with SQL Server locks is to use XE to trace
the functions that acquire and release locks [Microsoft Corp. ]. The trace can then be processed to
determine which thread was holding a particular lock at a particular time. However, the functions
for acquiring and releasing latches lack the necessary static instrumentation.

The SQL Server group at Microsoft has extended the capabilities of XE into a dynamic instru-
mentation system based on Fay, called XE Dynamic. XE Dynamic can be used on any process and
can trace any hot patchable native user mode function in any module in the process. The list of
tracepoints is obtained by enumerating all the instrumentable functions from the PDB files. Using
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XE Dynamic one could finally instrument functions which hold latches. The resulting logs readily
identified the thread that was holding the latch.

Although we had tested the scaling of Fay on computer clusters, earlier versions of Fay did
not scale properly when used on a single large machine, with 128 cores; with SQL Server Fay
reduced the transaction throughput by up to 70%. However reimplementing the locking strategies
used internally by Fay eliminated most of these problems.

Fay and XE Dynamic have helped in diagnosing a range of problems of this general type. The
investigation typically starts with the observation that a resource or system object (latch, lock, priv-
ilege, TCP port, UDP packet) is not available. The next step is to identify the cause by monitoring
functions that manipulate the resource or object. Often, static instrumentation is not available or not
sufficient, and Fay can easily gather the required information.

XE Dynamic is being used internally in development for bug and performance investigations. It
is used in testing to implement validation and notification functionality without requiring changes
to the production source code. XE Dynamic is also the basis for a profiler that is used to track per-
formance regressions between builds. The profiler uses Fay probes to query hardware performance
counters and record detailed information about each function such as cache misses, instructions re-
tired and CPU cycles spent executing the function. Another important application of XE Dynamic
is in the investigation of customer support cases.

6. RELATED WORK
Fay is motivated by the many attractive benefits of the DTrace platform [Cantrill et al. 2004], while
Fay’s fundamental primitives are more like those of SystemTap [Prasad et al. 2005] and Ftrace [Ros-
tedt 2009].

Fay makes use of, and integrates with a number of technologies from Microsoft Windows [Russi-
novich et al. 2009], including Event Tracing for Windows [Park and Buch 2007], Power-
Shell [Stanek 2009], Vulcan [Srivastava et al. 2001], Hotpatching [Microsoft Corp. 2003], Struc-
tured Exception Handling [Pietrek 1997], and the Driver Model [Oney 2002].
Dynamic Instrumentation Systems Fay is related to several systems that perform dynamic in-
strumentation: KLogger [Etsion et al. 2007], PinOS [Bungale and Luk 2007], Valgrind [Nethercote
and Seward 2007], scalable tracing on K42 [Wisniewski and Rosenburg 2003], Ftrace and System-
Tap on Linux [Prasad et al. 2005; Rostedt 2009], Solaris DTrace [Cantrill et al. 2004], the NTrace
prototype [Passing et al. 2009], and Detours for the Win32 interface [Hunt and Brubacher 1998].

The Fay probe dispatcher is related to new tracing tools that make use of inline mechanisms,
not traps. On Linux, Ftrace [Rostedt 2009] provides tracing based on fast, inline hooks placed
by compiling the kernel with special flags. On Windows, the NTrace research project leverages
hotpatching [Passing et al. 2009], but does so via a custom, modified kernel. Compared to Fay, the
Ftrace and NTrace mechanisms offer more limited functionality, are likely to be less efficient, and
provide neither safe extensibility nor a high-level query interface.
Safe Operating Systems Extensions Fay is an example of a system that implements safe operating
systems extensions using software-based techniques [Bershad et al. 1995]. This is not a new idea.
Indeed, Fay has striking similarities to the SDS-940 Informer profiler developed at the end of the
1960’s [Deutsch and Grant 1971]. Other systems and techniques for providing safe system exten-
sibility include Typed Assembly Language [Morrisett et al. 1998], Proof-Carrying Code [Necula
1997], as well as Software-based Fault Isolation (SFI) [Wahbe et al. 1993], and its implementations
in MiSFIT [Small and Seltzer 1998], Native Client [Yee et al. 2010], and similar systems [Erlingsson
et al. 2006a].
Declarative Tracing and Debugging The Fay integration with DryadLINQ is related to several
prior efforts to support declarative or relational queries of software execution traces. In partic-
ular, Fay is related to declarative tracepoints [Cao et al. 2008], PQL [Martin et al. 2005], and
PTQL [Goldsmith et al. 2005], and also to work in aspect-oriented programming [Avgustinov et al.
2006].
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In the trade-off between creating a domain-specific language and using a generic language, such
as LINQ, we have opted towards the latter. Embedded knowledge about the semantics of traces
(e.g., time, procedure nesting, etc.) can make the evaluation of some queries more efficient. Probes
should be be able to aggregate and reduce data as much as possible, while relegating expensive
computations to external systems. Here, we believe that FayLINQ strikes a good balance.
Large-scale, Distributed Tracing Large-scale, distributed tracing, data collection and debug-
ging [Liblit et al. 2003; Sookoor et al. 2009] is a highly active area, with several existing, attractive
systems, and one deployed across a billion machines [Glerum et al. 2009]. Of particular relevance
are recent systems, like Chopstix [Bhatia et al. 2008], and Flight data recorder [Verbowski et al.
2006], as well as their predecessor DCPI [Burrows et al. 2000] and its recent distributed analogue
GWP [Ren et al. 2010]. Similarly, earlier work such as Magpie [Barham et al. 2004] on tracing
requests across activities has recently been extended to the datacenter [Sigelman et al. 2010]. Fi-
nally, also highly relevant is work from the high-performance community for tracing in parallel sys-
tems [Lee et al. 2007; Massie et al. 2003], and the techniques of stream-processing platforms [Bal-
azinska et al. 2005]. Flume [flume ] is a log collection system that allows the transformation and
filtering of log data, similar in some aspects to simple FayLINQ queries.

7. CONCLUSIONS
Fay is a flexible platform for the dynamic tracing of distributed systems. Fay is applicable to both
user- and kernel-mode activity; our Fay implementation for x86-64 Windows can be applied even
to live, unmodified production systems. Users can utilize Fay tracing through several means, which
include traditional scripting. Fay users can also safely extend Fay with new, efficient tracing primi-
tives, without affecting the reliability of traced systems.

Distinguishing Fay from previous tracing platforms is its disaggregated execution, even within a
single machine, as well as its safe, efficient extensibility, and its deep integration with a high-level
language and distributed runtime in FayLINQ—all of which facilitate large-scale execution trace
collection and analysis.

Building on the above, FayLINQ provides a unified, declarative means of specifying what events
to trace, as well as the aggregation, processing, and analysis of those events. As such, FayLINQ
holds the potential to greatly simplify the investigation of performance, functionality, or reliability
issues in distributed systems. Through benchmarks and experiments, we have demonstrated the
efficiency and flexibility of Fay distributed tracing, and also shown how a few simple FayLINQ
queries can offer the same functionality as that provided by custom mechanisms in other tracing
platforms.
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