Fay: Extensible Distributed Tracing from Kernels to Clusters

Marcus Peinado
Microsoft Research

Ulfar Erlingsson
Google Inc.*

Extreme Computing Group

ABSTRACT

Fay is a flexible platform for the efficient collection, processing,
and analysis of software execution traces. Fay provides dynamic
tracing through use of runtime instrumentation and distributed ag-
gregation within machines and across clusters. At the lowest level,
Fay can be safely extended with new tracing primitives, including
even untrusted, fully-optimized machine code, and Fay can be ap-
plied to running user-mode or kernel-mode software without com-
promising system stability. At the highest level, Fay provides a
unified, declarative means of specifying what events to trace, as
well as the aggregation, processing, and analysis of those events.

We have implemented the Fay tracing platform for Windows and
integrated it with two powerful, expressive systems for distributed
programming. Our implementation is easy to use, can be applied to
unmodified production systems, and provides primitives that allow
the overhead of tracing to be greatly reduced, compared to previous
dynamic tracing platforms. To show the generality of Fay tracing,
we reimplement, in experiments, a range of tracing strategies and
several custom mechanisms from existing tracing frameworks.

Fay shows that modern techniques for high-level querying and
data-parallel processing of disaggregated data streams are well
suited to comprehensive monitoring of software execution in dis-
tributed systems. Revisiting a lesson from the late 1960’s [15], Fay
also demonstrates the efficiency and extensibility benefits of using
safe, statically-verified machine code as the basis for low-level
execution tracing. Finally, Fay establishes that, by automatically
deriving optimized query plans and code for safe extensions, the
expressiveness and performance of high-level tracing queries can
equal or even surpass that of specialized monitoring tools.

Categories and Subject Descriptors
D.4.8 [Performance]: Monitors; D.2.5 [Software Engineering]:
Testing and Debugging—Tracing

General Terms
Design, Languages, Measurement, Experimentation, Performance

*Work done while at Microsoft Research Silicon Valley.

To appear in SOSP 2011: the 23rd ACM Symposium on Operating Systems
Principles, October 23-26, 2011, Cascais, Portugal.

Mihai Budiu
Microsoft Research
Silicon Valley

Simon Peter
ETH Zurich*
Systems Group

1. INTRODUCTION

Fay takes a new approach to the collection, processing, and analysis
of software execution traces within a machine or across a cluster.
The dictionary definition of Fay is “a fairy,” as a noun, or “to join
tightly or closely,” as a verb. In our work, Fay is a comprehensive
tracing platform that provides both expressive means for querying
software behavior and also the mechanisms for the efficient exe-
cution of those queries. Our Fay platform implementation shows
the appeal of the approach and can be applied to live, unmodified
production systems running current x86-64 versions of Windows.

At its foundation, Fay provides highly-flexible, efficient mech-
anisms for the inline generation and general processing of trace
events, via dynamic instrumentation and safe machine-code execu-
tion. These mechanisms allow pervasive, high-frequency tracing
of functions in both kernel and user-mode address spaces to be
applied dynamically, to executing binaries, without interruption in
service. At the point of each trace event generation, Fay safely al-
lows custom processing of event data and computation of arbitrary
summaries of system state. Through safe execution of native ma-
chine code and through inline code invocation (not using hardware
traps), Fay provides primitives with an order-of-magnitude less
overhead than those of DTrace or SystemTap [11, 45].

At its topmost level, Fay provides a high-level interface to systems
tracing where runtime behavior of software is modeled as a dis-
tributed, dynamically-generated dataset, and trace collection and
analysis is modeled as a data-parallel computation on that dataset.
This query interface provides a flexible, unified means for speci-
fying large-scale tracing of distributed systems. High-level queries
also allow the Fay platform to automatically optimize trace event
collection and analysis in ways that often greatly reduce overhead.

Below is an example of a complete high-level Fay query that spec-
ifies both what to trace and also how to process and combine trace
events from different CPUs, threads, and machines:
from io in cluster.Function("iolib!Read")

where io.time < Now.AddMinutes (5)

let size = io.Arg(2) //request size in bytes

group io by size/1024 into g

select new { sizeInKilobytes = g.Key,

countOfReadIOs = g.Count () };

This query will return, for an entire cluster of machines, an aggre-
gate view over 5 minutes of the read sizes seen in a module iolib,
for all uses of that module in user-mode or in the kernel. In our Fay
implementation, such declarative queries are written in a form of
LINQ [29]. From these queries, Fay automatically derives efficient
code for distributed query execution, optimizing for factors such as
early trace data aggregation and reduced network communication.

Fay can also be accessed through other, more traditional means. In
particular, in our implementation, Fay can be used through scripts
in the PowerShell system administration scripting language [55], as
well as directly through standard command-line tools. However it
is used, Fay retains the best features of prior tracing systems, such
as efficient trace event collection, low overhead—proportional to
tracing activity, and zero by default—and stateful probes that can
process event data directly at a tracepoint. Fay also provides strong
safety guarantees that allow probes to be extended in novel ways
with new, high-performance primitives.

1.1 Implementation and Experience

For now, Fay has been implemented only for the current x86-64
variants of Windows. However, the Fay approach is generally ap-
plicable, and could be used for distributed software execution trac-
ing on most operating systems platforms. In particular, a Fay im-
plementation for Linux should be achievable by modifying existing
mechanisms such as Ftrace [48], Native Client [64], and the Flume-
Java or Hadoop data-parallel execution frameworks [2, 13].

Although the specifics will vary, any Fay implementation will have
to overcome most of the same challenges that we have addressed
in our implementation for Windows. First, Fay must preserve all
the relevant software invariants—such as timing constraints, reen-
trancy and thread safety, locking disciplines, custom calling con-
ventions, paging and memory access controls, and the execution
states of threads, processes, and the kernel—and these are often
hard-to-enumerate, implicit properties of systems platforms.

Specifically, Fay must correctly manage tracepoints and probes
and reliably modify machine code to invoke probes inline at
tracepoints—which is made especially challenging by preemptive
thread scheduling and hardware concurrency [1]. As described in
Section 3, Fay meets these challenges with generally-applicable
techniques that include machine-wide code-modification barriers,
non-reentrant dispatching, lock-free or thread-local state, and the
use of time-limited, safe machine code to prevent side effects. In
particular, Fay offers the lesson that reliable machine-code modifi-
cation is a good basis for implementing platform mechanisms, as
well as to install tracepoints.

Second, Fay must provide mechanisms for safe machine-code ex-
tensibility, in a manner that balances tradeoffs between simplicity,
performance, high assurance, applicability to legacy code, compati-
bility with low-level runtime environments, debuggability, ease-of-
use, etc. As described in Section 3.3, the safety of our Fay exten-
sions is based on XFI mechanisms, which are uniquely well suited
to low-level, kernel-mode machine code [18]. We have developed
several variants of XFI, over a number of years, and applied them
to different purposes. Our experience is that specializing mecha-
nisms like XFI to the target application domain, and its constraints,
results in the best tradeoffs. Thus, Fay’s XFI variant is relatively
simple, and is tuned for thread-local, run-to-completion execution
of newly-written, freshly ported, or synthesized Fay extensions, ei-
ther in user-mode processes or the kernel.

Third, as the last major hurdle, to efficiently support high-level
queries, a Fay tracing platform must correctly integrate with new or
existing query languages and data-parallel execution frameworks.
In particular, Fay query-plan generation, optimizations, and task
scheduling must correctly consider the difference between persis-
tent, redundantly-stored trace event data and tracepoint-generated
data—which is available only at an online, ephemeral source, since

a tracepoint’s thread, process, or machine may halt at any time.
Section 4.2 describes how our Fay implementation meets this chal-
lenge, by using a simple, fixed policy for scheduling the process-
ing of ephemeral trace events, by using explicitly-flushed, constant-
size (associative) arrays as the single abstraction for their data, and
by applying incremental-view-update techniques from databases to
query planning and optimization.

We have applied Fay tracing to a variety of execution monitoring
tasks and our experience suggests that Fay improves upon the ex-
pressiveness and efficiency of previous dynamic tracing platforms,
as well as of some custom tracing mechanisms. In particular, we
have found no obstacles to using data-parallel processing of high-
level queries for distributed systems monitoring. Although Fay
query processing is disaggregated—collecting and partially ana-
lyzing trace events separately on different CPU cores, user-mode
processes, threads, and machines—in practice, Fay can combine
collected trace events into a sufficiently global view of software
behavior to achieve the intended monitoring goals. We have found
no counterexamples, ill-suited to Fay tracing, in our review of the
execution tracing literature, in our searches of the public forums
and repositories of popular tracing platforms, or in our experiments
using Fay tracing to reimplement a wide range of tracing strate-
gies, described in Section 5. Thus, while data-parallel processing
is not a natural fit for all computations, it seems well-suited to the
mechanisms, strategies, and queries of distributed systems tracing.

Our experiences also confirm the benefits of extensibility through
safe, statically-verified machine code—benefits first identified four
decades ago in the Informer profiler [15]. Safe extensions are key to
the flexibility of Fay tracing, since they allow any untrusted user to
utilize new, native-code tracing primitives without increased risk to
system integrity or reliability. As described in Section 4.2, they also
enable practical use of high-level, declarative Fay tracing queries,
by allowing Fay to synthesize code for efficient, query-specific ex-
tensions that it can use for early aggregation and processing in op-
timized Fay query plans.

In the rest of this paper we outline the motivation, design, and high-
level interfaces of Fay tracing and describe the details of its mech-
anisms. We report on benchmarks, measurements, and use cases in
order to establish the scalability, efficiency, and flexibility of Fay
tracing and to show its benefits to investigations of software behav-
ior. In particular, we show that Fay tracing can replicate and extend
a variety of powerful, custom strategies used on existing distributed
software monitoring platforms.

2. GOALS AND LANGUAGE INTERFACES

Fay is motivated by an idealized model of software execution trac-
ing for distributed systems, outlined in Figure 1. The goals can
be summarized as follows: The tracing platform should allow arbi-
trary high-level, side-effect-free queries about any aspect of system
behavior. Ateach tracepoint—i.e., when the traced behavior occurs
at runtime—the platform should allow arbitrary processing across
all current system state. Such general processing probes should be
allowed to maintain state, and used to perform early data reduction
(such as filtering or aggregation) before emitting trace events.

Ideally, tracing should incur low overhead when active and should
have zero overhead when turned off. The total overhead should be
proportional to the frequency of tracepoints and to the complexity
of probe processing. Tracing should be optimized for efficiency,
in particular by favoring early data reduction and aggregation; this

FayLINQ tracing a single machine:
from event
in machine ..

Kernel

FayLINQ tracing a cluster:

from event
in cluster ..

Figure 1: Tracing of an operating system and a machine clus-
ter, as implemented in FayLINQ. Stars represent tracepoints,
circles are probes, rounded rectangles are address spaces or
modules, rectangles are machines, and pentagons denote final
aggregation and processing. Arrows show data flow, optimized
for early data reduction within each module, process, or ma-
chine; redundant copying for fault tolerance is not indicated.

optimization should apply to all communication, including that be-
tween probes, between traced modules, and between machines in
the system. Finally, trace events may be ephemeral, since soft-
ware or hardware may fail at any time; however, once a trace event
has been captured, further trace processing should be lossless, and
fault-tolerant.

To achieve these goals for Fay tracing, our implementation inte-
grates with two high-level-language platforms: PowerShell script-
ing [55] and the DryadLLINQ system for distributed computing [66].
Figure 2 and Figure 3 show examples of how Fay tracing can be
specified on these platforms.

FayLINQ is a high-level interface to Fay tracing that allows
analysis of strongly-typed sequences of distributed trace events.
FayLINQ is implemented by extending DryadLINQ and derives
its expressive programming model from Language INtegrated
Queries, or LINQ [29]. FayLINQ’s programming model allows
a flexible combination of object-oriented, imperative code and
high-level declarative data processing [65, 66]. A FayLINQ query
can simultaneously express trace collection, trace event analysis,
and even the persisting of trace event logs.

FayLINQ queries operate on the entire dataset of all possible tra-
cepoints, and their associated system state, but hide the distributed
nature of this dataset by executing as if it had been collected to
a central location. In practice, queries are synthesized into data-
parallel computations that enable tracing only at relevant trace-
points, and perform early data selection, filtering, and aggregation
of trace events. FayLINQ makes use of modified mechanisms from
DryadLINQ—described in Section 4.2—to handle query optimiza-

Sprobe = {
process {
switch($([Fay]::Tracepoint())) {
$([Fay]::Kernel ("ExAllocatex"))
{ Scount = Scount + 1; }
}
}
end { Write-FayOutput $count; }
}
Get-FayTrace S$probe -StopAfterMinutes 5
| select count
| measure —-Sum

Figure 2: A Fay PowerShell script that counts the invocation of
certain memory-allocation functions in a 5-minute interval, on
all CPUs of a Windows kernel. Here, $probe uses a switch to
match tracepoints to awk-like processing (counting) and spec-
ifies the output of aggregated data (the count). A separately-
specified pipeline combines the outputs (into a final sum).

cluster.Function (kernel, "ExAllocate=*")
.Count (event => (event.time < Now.AddMinutes (5)));

Figure 3: An example FayLINQ query to perform the same
count as in Figure 2 across an entire cluster. From this, Fay
can generate optimized query plans and efficient code for local
processing (counting) and hierarchical aggregation (summing).

tion, data distribution, and fault-tolerance [65, 66]. In particular,
analysis and rewriting of the query plan allows FayLINQ to auto-
matically derive optimized code that runs within the finite space
and time constraints of simple probe processing, and can be used
even in the operating system kernel.

There is little room for optimization in script-based tracing systems
such as Fay PowerShell, or the popular DTrace and SystemTap
platforms [11, 45]. These scripting interfaces share inefficiencies
that can also be seen in Figure 2. Trace events are generated by ex-
ecuting imperative probes that are specified separately, in isolation
from later processing, and this barrier between event generation
and analysis prevents most automatic optimizations. Furthermore,
by default, for final analysis, trace events must be collected in a
fan-in fashion onto a single machine.

In comparison, FayLINQ is able to give the illusion of tracing a sin-
gle system, through a unified, coherent interface, even when multi-
ple computers, kernels, or user-level processes are involved. Only
a few limitations remain, such as that tracing may slightly perturb
timing, and that probes can access only state in the address space
they are tracing.

Fay tracing may sometimes be best done directly on the command
line, or through a PowerShell script, despite the limited opportu-
nity for optimization, In particular, PowerShell is part of the stan-
dard Windows monitoring toolset, and is well suited to processing
and analysis of object sequences such as trace events [55]. Further-
more, PowerShell exposes Windows secure remote access features
that allow Fay scripts to be executed even across machines in het-
erogeneous administrative domains.

Even so, the benefits of FayLINQ over PowerShell are made clear
by the example query of Figure 3. This query shows how simple
and intuitive tracing a cluster of machines can be with FayLINQ—

especially when compared against the more traditional script in
Figure 2, which applies to one machine only. Using FayLINQ, this
query will also be executed in an efficient, optimized fashion. In
particular, counts will be aggregated, per CPU, in each of the op-
erating system kernels of the cluster; per-machine counts will then
be aggregated locally, persisted to disk—redundantly, to multiple
machines for fault-tolerance—and finally aggregated in a tree-like
fashion for a final query result.

3. FUNDAMENTAL MECHANISMS

At the core of Fay tracing are safe, efficient, and easily extensible
mechanisms for tracing kernel and user-mode software behavior
within a single machine.

3.1 Tracing and Probing

The basis of the Fay platform is dynamic instrumentation that adds
function tracing to user-level processes or the operating system
kernel. Fay instrumentation is minimally intrusive: only the first
machine-code instruction of a function is changed, temporarily,
while that function is being traced.

Notably, Fay instrumentation uses inline invocations that avoid the
overhead of hardware trap instructions. However, such inline invo-
cations, and their resulting state updates, are necessarily confined
to a single process, or to the kernel, forcing each address space to
be traced separately. Therefore, Fay treats even a single machine as
a distributed system composed of many isolated parts.

3.1.1 Tracepoints

Fay provides tracepoints at the entry, normal return, and excep-
tional exit of the traced functions in a target address space. All Fay
trace events are the result of such function boundary tracing. Fay
can also support asynchronous or time-based tracepoints, as long
as they eventually result in a call to an instrumentable function.

When a tracepoint is triggered at runtime, execution is transferred
inline to the Fay dispatcher. The dispatcher, in turn, invokes one
or more probe functions, or probes, that have been associated with
the tracepoint. A probe may be associated with one or more trace-
points, and any number of probe functions may be associated with
each tracepoint. Further details of the Fay dispatcher are described
in Section 3.2 and illustrated in Figure 5.

To enable tracing of an address space, the base Fay platform mod-
ule must be loaded into the address space to be traced. This plat-
form module then installs probes by loading probe modules into the
target address space.

3.1.2 Probe Modules

Fay probe modules are kernel drivers or user-mode libraries
(DLLs). For both FayLINQ and PowerShell, source-to-source
translation is used to automatically generate compiled probe mod-
ules. (Our implementation uses the freely available, state-of-the-art
optimizing C/C++ compiler in the Windows Driver Kit [36].)

Figure 4 outlines how Fay probe modules are used for tracing in the
kernel address space. A high-level query is evaluated and compiled
into a safe probe module; then, that driver binary is installed into
the kernel. At a kernel function tracepoint, Fay instrumentation en-
sures that control is transferred to the Fay dispatcher, which invokes
one or more probes at runtime. Finally the probe outputs (partially)
processed trace events for further aggregation and analysis.

Tracing Runtime

Create
probe

query ——> Aggregate

Kernel

T T e

Ta rget{} W (Fay W
B

— J
Hotpatching XFI

Figure 4: Overview of how Fay makes use of probes when trac-
ing the kernel address space. Visual representations are as in
Figure 1—e.g., the star is a tracepoint. Kernel arrows show
probe module installation (going down), dynamic instrumenta-
tion (going left), the dispatch of a tracepoint to a probe function
(going right), as well as the flow of trace event data (going up).

Probe modules are subject to the standard Windows access con-
trol checks. In particular, only system administrators can trace the
kernel or other system address spaces, and kernel probe modules
must be cryptographically signed for the x86-64 platform. How-
ever, this is not enough: bad compiler setup, malicious input data,
or other factors might easily lead to the creation of a flawed probe
that would impair system security and reliability. Therefore, sub-
sequent to their generation, probe module binaries are rewritten
and processed to establish that they can be safely loaded and used
within the traced address space. This processing is based on a vari-
ant of XFI: a Software-based Fault Isolation (SFI) technique that is
uniquely applicable to both kernel-mode and user-mode code [61,
64, 18]. Section 3.3 gives the details of the simplified XFI mecha-
nisms used in our Fay platform.

Fay probe modules can be written from scratch, in C or C++, ported
from legacy code, or even hand-crafted in assembly code. Fay can
also be extended with new computations or data structures, sim-
ilarly specified as low-level or native code. Such Fay probe ex-
tensions might, for example, include hash functions for summariz-
ing state, or code for maintaining representative samples of data.
Extensions allow enhancing Fay with new primitives without any
changes to the platform—and can be used even from FayLINQ or
other high-level queries. Extensions are compiled with probes, and
are subject to the same safety checks; therefore, they raise no addi-
tional reliability or security concerns.

Fay resolves symbolic target-module references by making use of
debug information emitted at compile time for executable binaries.
(Much the same is done in other tracing systems [11, 45].) On
the Windows platform, such “PDB files” are available, and easily
accessible through a public network service, for all components and
versions of Windows.

3.1.3 Probe Processing

When triggered at a tracepoint, a probe will typically perform selec-
tion, filtering, and aggregation of trace data. For instance, a probe
may count how often a function returns with an error code, or col-
lect a histogram of its argument values. However, probes are not
limited to this; instead, they may perform arbitrary processing.

In particular, probes might summarize a large, dynamic data struc-
ture in the traced address space using expensive pointer chasing—

but do so only when certain, exceptional conditions hold true. Fay
probe extensions for such data traversal may even be compiled from
the same code as is used in the target system. Thus, Fay tracing can
make it practical to perform valuable, deep tracing of software cor-
ner cases, and to gather all their relevant system state and execution
context when they occur.

Fay probes can invoke an accessor support routine to examine the
state of the system. Multiple accessors are available in a runtime
library and can be used to obtain function arguments and return
values, the current CPU, process, and thread identity, CPU cycle
counts, etc. A TryRead accessor allows attempted reading from
any memory address, and thereby arbitrary inspection of the ad-
dress space. All accessors are simple, and self-contained, in order
to prevent probe activity from perturbing the traced system.

3.1.4 Probe State

For maintaining summaries of system behavior, Fay provides each
probe module with its own local and global memories. This muta-
ble state is respectively private to each thread (or CPU, in the ker-
nel), or global to each probe module. These two types of state allow
efficient, lock-free, thread-local data maintenance, as well as com-
munication between probe functions in the same address space—
globally across the CPUs and threads of the target system.

Both types of mutable probe state are of constant, fixed size, set at
the start of tracing. However, probes may at any time send a trace
event with their collected data, and flush mutable state for reuse,
which alleviates the limitations of constant-size state. To reduce the
frequency of such trace event generation, probes can make use of
space-efficient data structures (e.g., our Fay implementation makes
use of cuckoo hashtables [19]).

To initialize global and local state, probe modules can define spe-
cial begin and end probe functions, invoked at the start and end of
tracing. These “begin” and “end” probe functions are also invoked
at thread creation and termination, e.g., to allow thread-local state
to be captured into a trace event for higher-level analysis.

In combination, the above mechanisms allow Fay probes to effi-
ciently implement—from first principles—tracing features such as
predicated tracing, distributed aggregation, and speculative trac-
ing [11]. In addition, they make it easy to extend Fay tracing with
new primitives, such as sketches [7]. These features are exposed
through the high-level Fay language interfaces, and can be consid-
ered during both the optimization of Fay tracing queries and during
their execution. Section 5 describes some of our experiences im-
plementing such extended Fay tracing features.

3.1.5 Limitations of Fay Tracepoints and Probes
Compared to popular, mature tracing platforms, our Fay implemen-
tation has some limitations that stem from its early stage of devel-
opment. For example, while Fay tracing can be used for live, online
execution monitoring (e.g., as in Figure 7), the batch-driven nature
of the Dryad runtime prevents streaming of FayLINQ query results.
Also, currently, users of Fay tracing must manually choose between
call and jmp dispatchers, and whether trace events are logged to
disk, first, or whether per-machine analysis happens in a real-time,
machine-local Fay aggregation process.

On the other hand, the Fay primitives in our implementation are
fundamentally limited to function-boundary tracing of specially-
compiled binary modules, for which debug information is avail-

able. Other tracing platforms also rely on debug information
to offer full functionality, and are applied mostly to properly-
compiled or system binaries. Less common is Fay’s lack of
support for tracing arbitrary instructions. However, although
supported by both DTrace and SystemTap, per-instruction tracing
can affect system stability and is also fragile when instructions or
line numbers change, or are elided, as is common in optimized
production code. Thus, this feature is not often used, and its
omission should not greatly affect the utility of Fay tracing.

To confirm that per-instruction tracing is rarely-used, we per-
formed an extensive review of the public discussion forums and
available collections of tracing scripts and libraries for both DTrace
and SystemTap. Typical of the per-instruction tracing we could
find are examples such as counting the instructions executed by
a process or a function [17], or the triggering of a tracing probe
upon a change to a certain variable [57]. This type of tracing is not
likely to be common, since it requires extensive instrumentation
and incurs correspondingly high overhead, and since its goals
are more easily achieved using hardware performance counters
or memory tracepoints. Programmer addition of new debugging
messages to already-compiled code is the one example we could
find where per-instruction tracing seemed practical [56]; however,
the same can also be achieved by running under a debugger or,
if recompilation is an option, by the addition of calls to empty
functions, which Fay could then trace. Therefore, we have no
current plans to extend Fay beyond function-boundary tracing.

Fay supports only disaggregated tracing, even within a single ma-
chine: Fay probes have only a disjoint view of the activity in dif-
ferent address spaces, i.e., the kernel or each user-mode process,
which is then combined by higher-level Fay trace-event process-
ing. Existing tracing platforms such as DTrace [11] support imper-
ative operations on per-machine shared state, and use hardware-
trap-based instrumentation to access this shared state from both
the kernel and any user-mode address space. We have considered,
but decided against, adding Fay support for machine-global probe
state, accessible across all address spaces, implemented via mem-
ory mapping or a software device driver. So far, the distributed
nature of Fay tracing has made it sufficiently convenient to get vis-
ibility into user-mode activity by combining trace events from user
and kernel address spaces.

3.2 Dispatching Tracepoints to Probes

Fay tracing uses inline invocations to a Fay probe dispatcher,
through a call or jump instruction inserted directly into the target
machine code. Some other platforms dynamically insert a kernel
transition, or faulting instruction, to perform tracing [11, 45]. Com-
pared to this alternative, Fay inline tracing offers greater efficiency,
by avoiding hardware traps; similarly, the Ftrace facility recently
added to Linux also uses inline tracing for kernel functions [48].

Fay repurposes Windows hotpatching in a novel manner to mod-
ify the machine code at a function entry point, so that control is
transferred to the Fay probe dispatcher. Windows function hot-
patching is an existing operating systems facility, designed to allow
incorrect or insecure functions to be replaced on a running system,
without a reboot or process shutdown [34]. Hotpatching performs
reliable, atomic code modification with all CPUs in a well-defined
state (e.g., not executing the code being hotpatched). Previously,
hotpatching has been rarely used: since its introduction in 2003,
we are not aware of a generally-available software update from Mi-
crosoft that makes use of hotpatching.

/l\/lodule with a traced function Foo)

Caller:

e8ab62ffff call Foo

/Fay platform module) Fay probes

Exception Handler:
call t.except_probes 2 (PF1)->(PF2)
return ContinueSearch XFI XFI 1

/’Dispatcher :
. 7 t = lookup (return addr)
Cff1508e70600 call[Dispatcher] -
Foo:_ebf8 jmp Foo-6 call t.entry probes zz PF3)~
ccccee XFI %
Foo2: 57 push rdi < call t.Foo2 trampoline

S S
\ %

/vé'a.ll t.return_probes Zz @>@ """
XFI XFI v

return /*to after call Foo */
. J

Figure 5: Fay dynamic instrumentation of a function Foo, with five separate, safe probe functions invoked at its entry, return, and
exception tracepoints. Rounded rectangles show the relevant binary modules in the traced address space (the kernel, or a user-mode
process). Arrows indicate control flow, starting at the original call to Foo (no arrow is shown for the return to that original call site).
The lighter arrows, colored blue, show the nested call to Foo from the Fay dispatcher—via a trampoline that executes Foo’s original

first instruction and then jumps to its second instruction.

Fay uses the hotpatching mechanism to insert, at the start of func-
tions, inline invocations to the Fay probe dispatcher. This permit-
ted, but unintended use of hotpatching allows Fay to be used for the
pervasive tracing of existing, unmodified production systems.

All currently supported Windows binaries are hotpatch enabled.
Hotpatching constrains machine-code at function entry: six unused
bytes must be present before the function, and its first instruction
must be at least two bytes long, and be drawn from a small set of
opcodes. Each binary must also contain a number of hotpatch data
slots for pointers to new function versions; a normal binary mod-
ule has only 31 such slots, while the kernel has 127. In Fay, these
constraints on hotpatch data slots do not limit the number of trace-
points: Fay tracing is scalable to an arbitrary number of functions.

Figure 5 shows the machine code of a function Foo after Fay has
used hotpatching to modify Foo to enable its entry, return, and
exceptional exit tracepoints. The first instruction of Foo has been
replaced with a two-byte instruction that jumps backwards by six
bytes. At the six-bytes-earlier address, a new instruction has been
written that calls the Fay dispatcher. The call is indirect, through
one of the hotpatch data slots of the target module being traced
(this indirection allows loading the Fay platform module anywhere
in the 64-bit address space).

As Figure 5 indicates, upon entry the Fay dispatcher looks up a
descriptor for the current tracepoint (shown as t in the figure).
Tracepoint descriptors control what probes are triggered and pro-
vide the crucial first instruction that allows the dispatcher to call the
traced function. Fay looks up these descriptors in a space-efficient
hashtable [19], and the use of a simpler hashtable, with significantly
more memory, could reduce the cost of this lookup. For threads not
being traced, the lookup and use of descriptors might even be elim-
inated by using a Fay dispatcher with multiple entry points—one
for each possible first instruction—since different preamble code
at each distinct entry point could instruct the Fay dispatcher how
to emulate the effects of a traced function’s first instruction before
passing control to the rest of the function. Fay does not yet im-
plement such elaborations, since we have found the current lookup
efficient enough (about 40 cycles in our measurements).

A Fay tracepoint descriptor contains lists of probe functions to be
invoked, as well as other relevant information—such as the global
and local state to be used for each probe. Dispatching is lock
free, but runs with (most) interrupts disabled; descriptor updates
are atomically applied at an all-CPU synchronization barrier.

If the current thread is to be traced, the Fay dispatcher will invoke
probe functions both before and after the traced function as indi-
cated in the tracepoint descriptor lists—subjecting the execution of
each probe to the necessary safety and reliability constraints.

The Fay dispatcher also invokes the traced function itself. For this,
the dispatcher creates a new stack frame with copies of the func-
tion’s arguments. Then, the dispatcher uses a pointer from the
tracepoint descriptor to transfer control to a function-specific, exe-
cutable trampoline that contains a copy of the traced function’s first
instruction, followed by a direct jump to its second instruction.

The Fay dispatcher also registers an exception handler routine, for
capturing any exceptional exit of the function being traced. Fay in-
vokes exceptional exit probes when an exception is unwound past
this handler; once the probes have executed, Fay forwards the ex-
ception on to higher stack frames.

Actually, Fay provides multiple dispatcher implementations whose
performance and scalability differs. In particular, depending on the
traced function, Fay can save different sets of registers: functions
synthesized through whole-program optimizations require preserv-
ing all registers, while stable, externally-accessible functions re-
quire saving only a small, non-volatile set of registers.

Figure 5 shows the slowest and most scalable version of the Fay
dispatcher. This version hotpatches a call instruction before the
traced function. That call pushes Foo’s address on the stack
for descriptor lookup. This dispatcher is scalable since it requires
only one hotpatch data slot (out of the very limited number of
slots). However, the call places a superfluous return address on
the stack, which the dispatcher must eliminate before returning (at
the /**/ comment). Unfortunately, on modern CPU architectures,
such stack manipulations can have an adverse performance impact

o Dispatch to probe function Stacks Heap / other memory
33 ™ |
2 2 Traced > Fay Probe Probe
® target <« platform XFI module Probe
o g module , module module globals thread
gg VRN 11 locals
- © L A
Calls to Fay accessors

Figure 6: The layout of a traced address space, with a Fay probe XFI module. Probe functions may invoke only a restricted set of Fay
accessor support routines. Probe functions may write only to the shaded memory areas—and only to the thread-local memory of the
current thread. A probe may attempt to read any memory address via a Fay accessor that prevents faults due to invalid addresses.
XFI safeguards the integrity of the execution stacks, privileged hardware registers, and other critical host-address-space state.

by disrupting dynamic branch prediction [S1]. Therefore, when
only a limited number of functions are traced, Fay will use a faster
dispatcher, where hotpatching places a jmp instruction to a dis-
patch trampoline. Both dispatchers have low overheads; Section 5
compares their performance.

3.3 Reliability and Safety

Reliability is the paramount goal of the Fay dispatcher and other
Fay mechanisms; these must be correct, and are designed and im-
plemented defensively, with the goal of allowing target systems to
always make progress, and fail gracefully, in the worst case. How-
ever, Fay relies crucially on the safety of probe processing: to the
rest of the system, probes must always appear as (almost) side-
effect-free, pure functions—whether written by hand, compiled in
an uncertain environment, or even when crafted by a malicious at-
tacker. To ensure probe safety, previous tracing systems have used
safe interpreters or trusted compilers [11, 45].

Fundamentally, Fay ensures probe safety through use of XFI: one
of the recently-developed, low-overhead SFI mechanisms that are
suitable to x86-64 CPUs [18, 61, 64]. XFI is the only SFI mech-
anism to be applicable even to machine code that runs as part of
privileged, low-level systems software. Thus, Fay can rely on XFI
to provide comprehensive constraints on machine code probes, in-
cluding flexible access controls and strong integrity guarantees, and
yet allow probes to be utilized in any address space, including the
kernel. As in all SFI systems, safety is enforced through a combi-
nation of inline software guards and static verification of machine
code. Below, we outline the characteristics of the Fay variant of
XFI; more details about its underlying policies and mechanisms
can be found in the original XFI paper [18].

Like previous variants, Fay XFI is implemented using Vulcan [54].
However, Fay XFI aims for simplicity, and avoids complexities—
such as “fastpath guards” [18]—as long as doing so retains accept-
able performance. Instead of being fully inlined, Fay XFI guards
reside in separate functions, but are invoked inline with arguments
pushed on the stack. While slightly less efficient, this style leads
to minimal code perturbation, which both simplifies XFI rewriting
and also facilities debugging and understanding of probe machine
code.

Fay XFI is also customized to its task of enforcing safety properties
for Fay probes. Figure 6 shows a Fay XFI probe module in a target
address space (cf. Figure 1 in [18]). Fay probes should be side-
effect-free, and execute only for short periods—to completion,
without interruption, serially on each (hardware) thread—using
only the fixed-size memory regions of their local and global state,

and making external invocations only to Fay accessor routines.
Thus, upon a memory access, Fay XFI memory-range guards can
compare against only one thread-local and one static region, and
need not consult slowpath permission tables—and, similar, fixed
tables can be consulted upon use of a software call gate.

Fay probes are not unmodified legacy code—they are either newly
written, newly ported, or automatically generated. Therefore, Fay
XFI does not allow arbitrary C, C++, or assembly code, but im-
poses some restrictions on how probes are written. Fay probes may
not use recursive code, dynamically allocate memory on the stack
frame, or make use of function pointers or virtual methods; these
restrictions make XFI enforcement of control-flow integrity trivial,
and also reduce the number of stack-overflow guards necessary, by
allowing worst-case stack usage to be computed statically. Also,
Fay probes may not use code that generates or handles exceptions,
or use other stack context saving functionality; such probe code
would be very difficult to support at low levels of the kernel and we
have removed the associated XFI host-system support. Finally, Fay
probes may not access stack memory through pointers, so probe
code must be converted to use thread-local probe state instead of
stack-resident variables; this simplifies XFI rewriting and verifica-
tion, and eliminates the need for XFI allocation stacks. These re-
strictions do not prevent any functionality, and although they may
result in greater porting efforts for some Fay probe extensions, this
is not onerous, since Fay probes necessarily execute relatively small
amounts of code and this code is often automatically generated.

Despite the above simplifications, Fay XFI still enforces all the
safety properties of XFI [18]—for instance, constraining machine-
code control flow, preventing use of dangerous instructions, re-
stricting memory access, and thwarting violations of stack integrity.

3.3.1 Thread-local Tracking for Reliability

To ensure reliability, the interactions between Fay and the software
it is tracing must always be benign. Thus, the operation of the
Fay dispatcher, probes, and accessors must be self-contained, since
Fay’s invocation of an external subsystem might adversely affect
the integrity of that subsystem, or result in deadlock. For example,
while Fay accessor routines may read system state, they must never
invoke system functions with negative side effects.

A thread that is performing Fay dispatching must be treated differ-
ently by both the Fay platform and the system itself. In particular,
Fay tracing must not be applied recursively, such as might happen
if Fay were used to trace system functions that are themselves used
by code in a Fay accessor routine. This scenario might happen, e.g.,
if Fay tracing was applied to mechanisms for trace event transport.

To prevent recursive tracing, Fay maintains a thread-local flag that
is set only while a probe is executing, and that is checked during
dispatching. (In the kernel, a small amount of thread-local stor-
age is available in the CPU control block; in user mode, arbitrary
thread-local storage is available.) A similar flag allows Fay to effi-
ciently support thread-specific tracing: the common scenario where
some threads are traced, but not others. Depending on the state of
these flags for the current thread, the Fay dispatcher may skip all
probes and invoke only the traced function. Fay keeps a count of
lost tracing opportunities due to the Fay dispatcher being invoked
recursively on a flagged thread.

Fay does not enforce any confidentiality policy: no secrets can be
held from kernel probes. Even so, Fay kernel probes are subject to
an unusual form of memory access control. A probe may write only
to its global or local state, and may only read those regions when
dereferencing a memory address. In addition, probes may use a
special TryRead accessor to try to read a value from any (poten-
tially invalid) memory address; this functionality can be used by
probes that perform pointer chasing, for example. The TryRead
accessor sets a thread-local flag that changes pagefault behavior on
invalid memory accesses and prevents the kernel from halting (Sec-
tion 3.5 gives further details on its implementation). However, Fay
will prevent even TryRead from accessing the memory of hard-
ware control registers, since such accesses could cause side effects.

Finally, probes must be prevented from executing too long. In the
kernel, a special tracing probe is added by Fay to one of the Win-
dows kernel functions that handles timer interrupts, to detect run-
away probes. This special probe maintains state that allows it to
detect if a hardware thread is still running the same probe as at
the previous timer interrupt—and will trigger an exception if a Fay
probe runs for too many timer interrupts in a row.

3.4 Transporting Trace Events

Fay uses Event Tracing for Windows, (ETW) [41] to collect
and persist trace events in a standard log format. ETW is a
high-functionality Windows system mechanism that provides
general-purpose, structured definitions for trace events, efficient
buffering of trace events, support for real-time trace consumers
as well as efficient persistent logging and access to tracelog files,
support for dynamic addition and removal of producers, con-
sumers, and trace sessions, as well as the automatic provisioning
of timestamps and other metadata.

ETW tracing is lock free and writes trace events to CPU-local
buffers. Also, ETW is lossless, in that the number of outstanding
buffers is dynamically adjusted to the rate of event generation—and
in the unlikely case that no buffer space is available, an accurate
count of dropped events is still provided. Finally, the standard,
manifest-based ETW tracelog formats allows Fay trace events to
be consumed and processed by a wide range of utilities on the
Windows platform.

3.5 Practical Deployment Issues

Our Fay implementation has been crafted to ensure that it can be in-
stalled even on production systems, without a reboot. In particular,
we have carefully (and painfully) avoided dependencies on system
internals, and on features that vary across Windows versions. For
this, our Fay implementation sometimes makes use of side-effect-
free tracing of system functions such as in our support for asyn-
chronous tracepoints. In one case we had to change the behavior
of Windows: Fay hotpatches the kernel page fault handler with a

new variant that throws an exception (instead of halting execution)
when invalid kernel-mode addresses are accessed during execution
of the TryRead accessor.

The use of Fay tracing is subject to some limitations. In partic-
ular, Fay requires that target binary modules have been compiled
with hotpatching support; while this holds true for binaries in Win-
dows and Microsoft server products, it is not the case for all soft-
ware. Also, kernel tracing with the more scalable Fay probe dis-
patcher will require rebooting with kernel debugging automatically
enabled; otherwise, PatchGuard [35] will bugcheck Windows af-
ter detecting an unexpected call instruction, which it disallows in
machine-code hotpatches.

Finally, even for Windows system binaries, Fay is currently not
able to trace variable-argument functions—since the Fay dispatcher
would then have to create a stack frame of unbounded size for its
invocation of the traced function.

4. LANGUAGES FOR FAY TRACING

We have integrated Fay with PowerShell to provide a traditional
scripting interface to tracing, and also created FayLINQ to provide
a LINQ query interface and a declarative, data-parallel approach
to distributed tracing. Both these popular high-level language plat-
forms provide flexible, efficient means of specifying tracing, in a
manner that feels natural—thereby removing the need to introduce
a domain-specific language, as done in other dynamic tracing plat-
forms [11, 45].

‘We have implemented several Fay support mechanisms that can be
utilized both in PowerShell and FayLINQ, since both are managed
code platforms. In particular, these provide for optimized compila-
tion of probe modules, their installation into the kernel, or injection
into a user-mode process. These mechanisms also give access to
debug information (from PDBs) for currently executing software—
e.g., to allow symbolic identification of tracepoints in a target bi-
nary module, as well as the global variables, types, enums, etc.,
of that module. Finally, these mechanisms allow real-time con-
sumption of ETW trace events, and the custom, type-driven unmar-
shalling of their contents.

4.1 Fay PowerShell Scripting

Here we give a brief outline of Fay PowerShell scripting. Pow-
erShell is structured around cmdlets, which are similar to awk
scripts operating on streams of objects, and augmented with ad-
ministration and monitoring features. In PowerShell, Fay probes
are just regular cmdlets, with a few natural changes in semantics:
begin{} blocks execute at the start of tracing, process{}
executes at each tracepoint, variables such as $global:var live
in global state, whereas regular variables are thread local, etc.

When used with Fay support cmdlets, such as Get-FayTrace,
tracing scripts are converted to C code, using source-to-source
translation, and compiled and processed into binary XFI probe
modules. Fay makes use of partial evaluation to resolve symbolic
reference in PowerShell scripts, as well as to identify tracepoints
and define a specialized probe function for each tracepoint. We
have used PowerShell mostly as a convenient means for ad hoc
Fay tracing, like that in Figure 7.

4.2 FayLINQ Queries

FayLINQ integrates the fundamental Fay mechanisms with the
LINQ language, as well as the optimizations and large-scale data

Most frequently-used Kernel Memory
Allocation Pool Tags

Y -
g Gh14J' - 1_~L|L
= DxgK
= NV S
= CMcij_EE' —
o
< VIMml—l .1 -
0 1000 2000 3000

Number of allocations

Figure 7: Output of a 20-line Fay PowerShell script that ev-
ery second updates a visual histogram of the five most common
types (or “tags’) of memory allocations from non-paged ker-
nel memory. The greatest number of memory allocations are of
type ’NV’, indicating they are due to the NVidia display driver.

processing capabilities of DryadLINQ [66]. This combination
allows high-level queries about distributed systems behavior to be
applied to—and executed on—the same cluster of computers.

On both a single machine, and on a cluster, FayLINQ input is nat-
urally modeled as operations on a concatenated set of trace event
streams. Fundamentally, Fay tracing generates multiple, disjoint
streams of ordered trace events, with a separate trace event stream
output by each thread in each address space. Therefore, FayLINQ
tracing consists of the execution of LINQ queries on an unordered,
merged collection of these ordered streams.

Concretely, the FayLINQ implementation proceeds from a single,
high-level query to generate an efficient set of tracepoints, and code
for Fay probes that perform extraction, processing, and early ag-
gregation of trace event data. FayLINQ also produces optimized
DryadLINQ query plans and processing code for both machine-
local and cluster-level aggregation and analysis.

The example in Figure 8 helps explain how FayLINQ oper-
ates, and give an overview of query execution. In the query,
kernelAllocations constrains the set of tracepoints to
those at the entry of the primary kernel memory allocation
function—with the Function extension method operating like
a Where clause. Then, from each tracepoint, the query re-
trieves the time property and the size of the allocation, which
is the second argument of ExAllocatePool (unfortunately,
PDB files do not contain symbolic argument names). Then,
allocIntervalSizePairs is used to collect, for each tra-
cepoint, which period-length interval it fell into, and integer
log, of its allocation size. These events are then grouped together
into results, and a separate count is made of each group where
both the time and log, allocation sizes are equal, with these triples
output as strings. Importantly, this final grouping applies to events
from all machines, and is implemented in two phases: first on each
machine, and then across all cluster machines.

Distributed tracing can be straightforwardly implemented by emit-
ting trace events for each tracepoint invocation and collecting and
processing those events centrally. One approach would be to use a
flat, wide schema (the union of all possible output fields) to allow
the same trace events to be output at any probe and at any trace-
point. Probes may be very simple, and need only fill out fields in the
schema. Unfortunately, this is not a very viable strategy: flattened
schemas lead to large trace events, and the output of trace events at

// Get the disaggregated set of kernel allocation trace events.
var kernelAllocations =
PartitionedTable<FayTracepoint>
.Get ("fay://clustername)")
.Function (kernel, "ExAllocatePool");

// For the next 10 minutes, map each allocation to a coarser period-based
// timeline of intervals and to log, of the requested allocation size.
var allocIntervalSizePairs =

from event in kernelAllocations

where event.time < Now.AddMinutes (10)

let allocSize = event.Arg(2) //NumberOfBytes

select new { interval = event.time/period,

size = log2(allocSize)) };

// Group allocations by interval and 1og, of the size and count each group.
var results =

from pair in allocIntervalSizePairs

group pair by pair into reduction

select new { interval = reduction.Key.interval,
logsize = reduction.Key.size,
count = reduction.Count () };

// Map each interval/log,size/count triple to a string for output.
var output =
results.Select (r => r.ToString());

Figure 8: A FayLINQ query that summarizes the rate of
different-sized kernel memory allocation requests over 10 min-
utes. The output indicates, for each period-length interval,
how often allocation sizes of different magnitude were seen.

high-frequency tracepoints will incur significant load, which may
easily skew measurements or even swamp the system.

Instead of the above, naive implementation approach, FayLINQ
performs a number of steps to optimize the execution of queries
like that in Figure 8. At a coarse granularity, these steps are:

Generic Optimizations. First, FayLINQ performs basic
DryadLINQ query optimizations, like dead code removal—notably
moving filtering and selection to the leaves of the query plan—i.e.,
towards the source of trace event data, the tracepoints.

Second, since a fay: // data source is used, FayLINQ creates an
optimized query plan, which collects trace events from Fay probes.
Like with PowerShell, the query is analyzed (using a form of partial
evaluation) to discover what machines, address spaces, processes,
and threads, and what functions should be traced by Fay.

Greedy Optimizations. Third, the query plan optimizer greed-
ily tries to move operations into Fay probe functions—as many as
possible. For the query in Figure 8, nearly all work can be pushed
into Fay probes at the query plan leaves, since the GroupBy oper-
ator can be decomposed into a local and a global aggregation [65].

Fourth, by default, the plan is modified to materialize Fay probe
output, to make trace events persistent and fault tolerant. Fifth,
a DryadLINQ plan is built for all remaining query parts. For Fig-
ure 8, this is the final, global aggregation and the computation of the
output strings. Sixth, the code for the Fay probes, and their in-
stallation and use, is emitted as a synthetic Dryad input vertex [26].

Query Execution. Figure 9 shows how FayLINQ will effi-
ciently execute the example in Figure 8. Figure 10 shows the
term-rewriting rules used to generate this optimized query plan.

FayLINQ probe processing:
Distributed, partial aggregation,
local to CPUs, machines, etc.

Ephemeral trace events
transition to being
persistent, fault-tolerant

Final aggregation in DryadLINQ

Figure 9: Optimized plan for the query in Figure 8. Symbols
are as in Figure 10 and its legend (e.g., arrows show data flow).

The dotted line in Figure 9 marks the separation between Fay
and DryadLINQ. At runtime, Dryad input vertices execute, start
Fay tracing, and then enter a loop processing the trace events
output by Fay probes. The Fay probes will usually perform some
aggregation. The results of the aggregation are periodically encap-
sulated in ETW events and flushed to the cluster-level aggregation
pipeline. Normally the aggregation results are flushed when the
internal fixed-size hashtables are filled. However, the user can
control the message frequency by specifying that aggregated event
statistics should be flushed at least every k probe invocations. The
payload of the ETW events is unmarshalled and decoded into
.NET objects, which are further transported using the standard
DryadLINQ transport mechanisms using reliable Dryad channels.
The DryadLINQ part of the query runs on the cluster, taking full
advantage of the fault-tolerance, scheduling and optimizations of
the Dryad runtime, which is proven to scale to large clusters.

4.2.1 Probe Code Generation

The FayLINQ implementation optimizes the query plan to
move data filtering, transformation, and aggregation (includ-
ing GroupBy-Aggregate) from the LINQ query into Fay probes.
Currently, the following LINQ statements can be executed by
Fay probes: Where, Select, Aggregate, and GroupBy—as
well as the many special cases of these operators, such as Sum,
Count, Average, Distinct, Take, etc. Query parts that
cannot be executed by probes are executed by DryadLINQ, on
the cluster. This includes the aggregates of data from multiple
machines—which, DryadLINQ will automatically perform in a
tree-like fashion, when that improves performance [65].

In our current implementation, not all uses of the above LINQ op-
erators can be transformed to execute in Fay probes. The operators
must use only values (basic types and structures) and must only
call static methods for which a Fay accessor or extension is avail-
able. However, Fay probes can invoke any lambda expression that
uses only these basic primitives. For example, sketch-based tracing
(similar to that in Chopstix [7]) can be expressed simply as

clusterTraceEvents
.Where (event => HCA (event.time/period, event))

where HCA is a function in an optimized, native-code Fay exten-
sion that sketches all events in each distinct time period, by updat-
ing mutable probe state. Section 5.2.3. describes further how Fay
extensions can implement tracing primitives such as sketching.

Rewrite rules

Input query

probe

machine

cluster

Legend
I = Input e = /e o @ @

W = Where R P74

S = Select @ » @

M = Merge @ @

A = Aggregate

C = Combiner for A -g-7-- __ _
GA = GroupBy-Aggregate m » m
GC = GroupBy-Combiner
GR = GroupBy-Reducer ° e

Figure 10: Term-rewriting from LINQ to Fay probes, with cir-
cles and arrows representing operators and data flow. The
input operation merges the trace events from tracepoints and
performs user-specified computations on that merged stream.
Term-rewriting optimizations push operations closer to data
sources. The first and second rewrite rules push filtering and
selection ahead of merging. The last rewrite rule transforms
counting into a sum of partial counts; the third rule generalizes
this last one and rewrites aggregations on partial groups.

FayLINQ generates C code using syntax-directed translation
from the optimized LINQ query plan. The translation proceeds
naturally—e.g., Where translates to if statements, etc. More in-
terestingly, at each tracepoint invocations, the C code may modify
probe state to perform incremental updates. Since LINQ queries
are essentially database views, this implementation of FayLINQ
query evaluation is much like an optimized incremental view
update, and makes use of database-like mechanisms [24, 65]. For
example, in the query of Figure 8, at each probe invocation, the
time interval and log(allocation size) are computed immediately
and used to update counts in a hashtable.

Notably, GroupBy, when followed by aggregation, can often be
translated using Fay hashtable updates. As mentioned above, this
pattern—often known as map-reduce [14]—can often be decom-
posed into a local and global GroupBy operations [65]. The local
reduction may then be Fay hashtable updates, while the global re-
duction remains in DryadLINQ. Importantly, fixed-size hashtables
may be used for local aggregation, since the global aggregation can
“fix” incomplete aggregations. When the hashtables are full, and
insertion fails, Fay probes can output a trace event containing the
hashtable data and clear it out for reuse.

5. EXPERIMENTS AND EVALUATION

We have used Fay to diagnose system behavior on both single ma-
chines and on medium-size clusters. For example, as we started
using Fay we immediately noticed a performance issue where the
built-in Windows command shell was CPU-bound doing continu-
ous system calls for no good reason. Below, we retell our diagnosis
of this issue as a detailed, anecdotal case study of using Fay tracing.

Windows System Call | Count | Callers

. cmd.exe
NtRequestWaitReplyPort 1,515,342 conhost
NtAlpcSendWaitReceivePort 764,503 | CSRSS
NtQueryInformationProcess 758,933 | CSRSS
NtReplyWaitReceivePort 757,934 | conhost

Table 1: The processes in the command shell case study, and a
count of how often they made the relevant system calls. The two
calling NtRequestWaitReplyPort did so about equally often.

The utility of tracing and monitoring platforms has long since been
established through both published results as well as through pre-
vious anecdotal case studies. In many cases, such as in the DTrace
study in Section 9 of [10], an issue is first raised by some external
monitoring tool that can be applied continuously to live production
systems (such as an offline log analysis tool or a low-overhead,
statistical profiler [9]). After such initial identification by other
means, dynamic tracing may be used for detailed, manual or semi-
automatic behavior analysis. Even then, tracing overheads may be
too high for production systems, which often forces the issue to be
reproduced on non-critical systems before it can be analyzed.

Fay tracing can be efficient enough to overturn the above paradigm
and allow continuous dynamic tracing of live production systems,
both before and during the analysis of any detected issues. With
this in mind, the Fay primitives have been used to extend the ex-
isting tracing mechanisms in one of Microsoft’s mature, scalable
enterprise transaction platforms. This platform performs transac-
tions on separate threads and, during normal operation, Fay trac-
ing allows the properties of a random sample of transactions to be
closely monitored with very low overhead. Fay tracing has little
global performance impact (e.g., it does not force kernel traps),
and threads that are not being traced spend few extra CPU cycles
at each tracepoint, thanks to thread-specific Fay dispatching. If an
issue arises, and needs to be analyzed, Fay tracing can be dynami-
cally directed to detailed behavior analysis, and more functions and
threads, usually at only a modest, acceptable increase in overhead.

The rest of this section starts off with a Fay case study, presented
in the informal, anecdotal style of studies in the literature [10]. In-
stead of enumerating further tracing applications, we subsequently
examine the flexibility of Fay tracing through the implementation
of a variety of different distributed software monitoring strategies.
Finally, we present experimental measurements that establish the
efficiency of the Fay tracing primitives, the scalability of the Fay
platform to fully-loaded clusters, and the benefits of FayLINQ
query optimizations.

5.1 A Fay Performance-diagnosis Case Study
In some of our earliest Fay tracing experiments, we interactively
used the Windows command shell (cmd.exe) while observing a
live, real-time chart of machine-wide system-call frequencies much
like that in Figure 7. Surprisingly, we observed very high frequen-
cies for some tasks where we expected to see few system calls, such
as copy * NUL,ortype large.txt inaminimized window,
ordir /S >NUL. We used Fay to investigate, as described be-
low, and to ensure reproducibility we used only public information
available outside Microsoft, such as public symbol files.

Outputting a 16 MB file of ASCII text in a minimized console win-
dow, using type, produced around 3.75 million system calls, and

was CPU bound for a significant amount of time. We used a Fay
query to aggregate by calling process, with Table 1 showing the
dominant four system calls. To see how these three processes in-
teracted, we combined their system calls and arguments into a sin-
gle view, using a Fay query for a temporal join (see Section 5.2.4
and [5]). The query showed a repeated pattern: cmd.exe blocks on
a port request to conhost; then, conhost blocks on a port request
to the CSRSS service, which queries for process information; then,
CSRSS blocks on a port send to conhost, which unblocks it; finally,
conhost makes a request back to cmd.exe, unblocking it. These
were clearly Windows Local Procedure Calls (LPC) spanning the
three processes [49].

Fay tracing showed some LPC rounds to be a result of the well-
documented WriteConsole function outputting a line (of 80
characters or less) to the console, However, we saw an even greater
number of LPC rounds caused by a function FileIsConsole.
By Fay tracing of arguments, we could establish that, for every sin-
gle line of output, the command shell would check twice whether
stdout was directed to the console window, or not, at the cost of
two LPC rounds and many context switches and system calls. Even
more surprisingly, we saw those checks and LPC rounds continue
to occur when output was directed to a file—causing nearly a mil-
lion system calls when we used t ype to output our 16 MB text file
to the special file NUL, for example.

We also used Fay tracing to investigate other frequent system calls,
by collecting and counting their distinct arguments, return values,
and user-mode stack traces. This data indicated that the calls to
NtQueryInformationProcess in Table 1 were due to an in-
ternal CSRSS function, TsConhost, inspecting an undocumented
property (number 49) of the cmd.exe process. The arguments and
return values strongly indicated that CSRSS was retrieving this
property, on every LPC round, to verify that an intermediary con-
host was still hosting the console for an originating cmd.exe.

The above behavior also occurs for commands run in shell scripts,
which often redirect large amounts of output to files or to NUL.
The most frequent system calls simply retrieve information from
the kernel, and user-mode processes can typically cache such data
or read it via a “shared user data page” (like the one exposed by
the Windows kernel) that gives a read-only, up-to-date view of
data maintained elsewhere [49]. Thus, concretely, our Fay case
study identified potential reductions in the LPC rounds and context
switches required for each line of command shell output, which
could eliminate most of the system calls in Table 1. However, com-
mand shell output is usually not a critical performance issue, and its
implementation in Windows appears tuned for reliability and sim-
plicity; thus, while insightful, our observations are not sufficient to
justify immediate changes to user-mode or kernel-mode code.

5.2 Reimplementing Tracing Strategies

To stress the generality of Fay tracing, we reimplemented several
existing, custom tracing strategies on top of the Fay tracing plat-
form. This reimplementation was done with minimal effort, by
leveraging Fay extensions and the high-level queries of FayLINQ.
We used two DryadLINQ clusters: one with 12 machines with
dual 2GHz AMD Opteron 246 processors and 8GB of memory,
and another with 128 machines with two 2.1GHz quad-core AMD
Opteron 2373EE processors and 16GB of memory, both running
Windows Server 2008 R2 Enterprise. Below we describe our im-
plementations and (in some cases) the results of applying these
monitoring strategies to our clusters.

5.2.1 Distributed Performance Counters

A common strategy for distributed monitoring is to count the events
generated across all machines of a cluster. Fay tracing can trivially
implement this strategy by applying the appropriate aggregation
operations to any metrics on the trace events available to probes
on a single machine. Unlike traditional performance counters, Fay
tracing allows both user-controllable and efficient aggregation. For
instance, with small changes, the query shown on page 1 can pro-
vide per-process, per-thread, and per-module statistics on all clus-
ter activity in both user-mode and the kernel. Such monitoring of
memory allocation cannot be achieved with traditional Windows
performance counters, even on a single machine.

5.2.2 Automatic Analysis of Cluster Behavior

Several recent systems have applied automatic machine-learning
techniques to extract useful information from activity signatures
collected across a cluster [30, 63]. We used FayLINQ to perform
an analysis similar to that of Fmeter [30] on our cluster, while it
executed an unrelated map-reduce workload (N-gram generation).

A single FayLINQ query sufficed to express the entire trace collec-
tion, the k-means clustering of the collected traces, and the analysis
of the traced workload using those machine-learning results. This
query collects periodic system-call-frequency histograms for the
402 system calls in the Windows kernel, at a granularity of around
1 second. Collecting this information does not measurably affect
CPU utilization or machine performance, since FayLINQ syn-
thesizes efficient, stateful kernel probes that maintain counts per
system call. The data-analysis part of the FayLINQ query reduced
the dataset dimensionality by applying k-means clustering (with k
set to 5) on the histograms, using published distributed machine-
learning techniques for DryadLINQ [33]. Then, the FayLINQ
query associated the workload activity in each period with the
closest of the five centroids resulting from the k-means clustering.
Finally, the FayLINQ query output results into a visualization tool
to produce the chart in Figure 11.

Figure 11 shows activity on all machines, during execution of the
map-reduce workload. All activity periods are associated with their
most similar k-means centroid, each of which has a unique color
and a (manually-added) label: io, idle, memory, cpu, or outlier.
By comparing against the map-reduce job plan, it can be seen that
Figure 11 precisely captures the workload’s different processing
stages, as annotated at the bottom of the figure—including the use
of five machines in the first stage, and ten machines for the sec-
ond, and the final stages of io-intensive data reduction. Here, we
compared against ground truth from a known map-reduce job plan.
However, in most cases, no such explicit plan exists, and similar
FayLINQ analysis could clarify the processing phases of even com-
plex, opaque distributed services.

5.2.3 Predicated and Windowed Trace Processing
Some systems implement stateful or non-deterministic tracing
primitives that are not so easily expressed as pure, functional
LINQ queries. Nonetheless, FayLINQ can utilize Fay’s extensi-
bility to provide such primitives and incorporate their results into
tracing queries. Concretely, users of FayLINQ can implement any
probe extension by providing an arbitrary C function, or make use
of our library of such extensions.

Fay extensions can use optimized machine code to evaluate the
state of a traced system in any manner, whether complex or state-
ful. Thus, Fay can offer a efficient, general form of predication and

ioM idle memory cpu | outlier i
12 I I
11 I
-10] |
-09-]
A I
< o714
S o} |
s}
g 051
044 |
03
oot] |l [1 time
0T 33 50 57 5 \ 84 100 17 134 0 167
Y Y i
map, repartition reduce combine sort merge

5 machines used 10 machines used

Figure 11: The result of FayLINQ analysis of cluster behavior
while executing a map-reduce job. This 2D plot shows the re-
sults of automatic k-means clustering of system-call histograms
collected periodically across all machines. The X axis shows
time, machines are on the Y axis, and each period is colored
according to its representative k-means centroid.

speculation, and support tracing that cannot even be expressed in
language-restricted platforms like DTrace [11]. To achieve similar
functionality, other tracing platforms require the evaluation code to
be fully trusted—thereby leaving the traced system fully exposed
to any reliability and security issues in that code.

In particular, we have implemented Fay probe extension functions
for Chopstix sketches [7], to provide statistical, non-uniform
sampling of low- and high-frequency events with low overhead.
FayLINQ sketching uses a hashtable of counters to ensure that
trace events are output in logarithmic proportion to the total num-
ber of occurrences. While our sketching library implementation
hides some complexity, FayLINQ users need only invoke a simple
HCA function to use the library, much as in the code on page 10.

We have also implemented probe extensions for temporal process-
ing on trace event streams, such as windowed (sliding or staggered)
computations. For example, our simple MovingAverage exten-
sion for computing moving averages is used in the below query,
which emits all kernel memory allocations that are 10 times larger
than the current local moving average:
cluster.Function ("ExAllocatePoolWithTag")
.Select (event => GetArg(2)) //allocation size
.Select (sizeArg => new {
average = MovingAverage (sizeArg),
size = sizeArqg })
.Where (alloc => alloc.size > l1l0xalloc.average);

5.2.4 Tracking Work Across Distributed Systems
Several distributed monitoring platforms track all the activity per-
formed for work items, as those items are processed by different
parts of the system [5, 50]. Often, such tracking is done via passive,
distributed monitoring, combined with “temporal joins” to infer dy-
namic dependencies and flow of work items. Fay tracing can easily
support such monitoring, by encoding temporal joins as recursive
queries that transitively propagate information, and by iterating to
convergence. We have used FayLINQ to track work in a distributed
system by monitoring and correlating sent and received network
packets, to analyze the traffic matrix of DryadLINQ workloads.

5.2.5 Tracing Across Software Abstractions
We used Fay to redo a study of the Windows timer interfaces and
mechanisms; the original study [43] was done by modifying Win-

Solaris | OS X | Fedora
Experiment Fay | DTrace | DTrace | STap
km 220 1717 1805 1129
um call 197 1557 2565 9009
um jmp 155
um call deep || 431 1683 2813 9384
um jmp deep 268

Table 2: Overhead in CPU cycles per call to a traced function.
Here, km is kernel mode, um is user mode, and deep builds
a 20-deep stack before each call. Fay dispatches using inline
call or jmp instructions; other platforms trap to the kernel.

dows source code. Starting with the low-level, kernel timer inter-
faces KeSetTimer, KeSetTimerEx, and KeCancelTimer,
we used FayLINQ to trace timer usage. For each use, we grouped
by return addresses on the call stack and sorted to identify com-
mon callers, thereby identifying the small number of modules and
functions that are the primary users of KeSet Timer, etc. We then
iterated, by creating a larger, recursive FayLINQ query, predicated
to generate trace events only in certain contexts, and discovered 13
sets of timer interfaces in Windows, such as ZwUserSetTimer.
Close, manual inspection revealed that those interfaces were based
on five separate timer wheel implementations [59].

5.3 Performance Evaluation

To assess the efficiency and scalability of our Fay implementation,
we measured the performance of Fay tracing and its mechanisms
for instrumentation, inline dispatching, and safe probe execution.
The experiments ran on an iMac with a 3.06GHz Intel E7600 CPU
and 8GB of RAM. We configured this machine to run 64-bit ver-
sions of Windows 7 Enterprise, Mac OS X v10.6, Fedora 15 Linux
(kernel version 2.6.40-4.fc15), and Oracle Solaris 11 Express, in
order to directly compare Fay tracing against DTrace, on two plat-
forms, and against SystemTap (version 1.5/0.152) on Linux.

5.3.1 Microbenchmarks

To measure the cost of dispatching and executing an empty
probe, we created a user-mode microbenchmark that contains
an empty function foo, which it calls in a tight loop. We mea-
sured its running time both with, and without, Fay tracing of
foo using an empty probe. We also created a microbench-
mark that invokes a trivial system call in a tight loop, and
where we traced the kernel-mode system call handler. (We
used the getpid system call, except on Windows where we used
NtQuerySystemInformation with an invalid parameter to
minimize the work it performed.)

We also wanted to measure the effects of branch-misprediction
caused by the stack manipulation of the Fay call dispatcher (see
Section 3.2). Therefore, we created variants of the microbench-
marks that call foo via a sequence of 20 nested functions—forcing
20 extra stack frames to be unwound at each foo tracepoint.

Table 2 shows the results of our microbenchmarks, with time mea-
surements converted to CPU cycle counts. Fay takes around 200
cycles per call and, as expected, dispatching using jmp is notice-
ably faster than Fay call dispatcher. If a thread is not being
traced, this work can be cut in half, and the Fay call dispatcher
adds only about 107 cycles per call. In both of these cases, the
hashtable lookup of tracepoint descriptors accounts for roughly 40
cycles. The experiments for DTrace and SystemTap were run using

13

| MD5 | 1d | hotlist
Measured Fay XFI slowdown || 184% | 552% | 1387%
XFI slowdown from [18] 101% | 346% 798%

Table 3: Slowdown due to XFI for three benchmarks. The Fay
XFI variant is much simpler, but has nearly twice the overhead.

Solaris 0OS X
H Fay | DTrace ‘ DTrace

Traced functions 8001 31998 9341
Function calls (millions) 60 253 306
Running time w/tracing 28.0 103.2 149.6
Slowdown 2.8x 17.2x 26.7x

Table 4: Instrumenting all kernel functions to test scalability.

function boundary tracing and per-CPU collection and aggregation.
Compared to Fay, the other tracing platforms generally required a
bit less than an order-of-magnitude more cycles.

Next, we compare the execution time of three benchmark probes
with and without XFI rewriting, summarizing the results in Table 3.
This experiment replicates parts of Table 1 in [18] (slowpath with
read and write protection). Our overhead is larger than that in [18],
which is not surprising, since we targeted simplicity in our imple-
mentation. However, Fay XFI performance still compares favor-
ably to that of safe interpreters like those used in DTrace [47].

5.3.2 Scalability and Impact of Optimizations

We have used Fay to trace all the 8,001 hotpatchable functions in
the Windows kernel and increment a per-CPU counter at each tra-
cepoint, to count the total kernel function invocations. Such tracing
does not occur often, but can be useful. An example application,
that has seen practical use in other tracing platforms, is the tracing
of all kernel activity due to a specific kernel module, such as a net-
work driver, or a specific interrupt handler [17], and the generation
of function call graphs for later visualization [16].

Table 4 displays the results of tracing a workload that copied all the
RFC text files between ramdisk directories, deleted the new copies,
and repeated this a fixed number of times. Fay scales very well,
and using it to trace the vast majority of Windows kernel functions
leaves the machine perfectly responsive and about 2.8 times slower
on a benchmark that spends 75% of its time executing kernel code.
Notably, the scale of this experiment creates a worst-case scenario
for Fay performance: the Fay call dispatcher adds an extra stack
frame on every kernel function invocation, and suffers a branch-
prediction miss on every function return.

The slowdown factors for DTrace are significantly higher, on both
Solaris and Mac OS X. However, slowdown factors are not directly
comparable, since Fay and DTrace are instrumenting different op-
erating systems. Trying to repeat the experiment with SystemTap
resulted in a hung Linux kernel, apparently due to a long-standing,
well-known SystemTap bug [58].

We tested the scalability, robustness, and optimizations of Fay trac-
ing by utilizing our 128-machine, 1024-core cluster for a bench-
mark that makes 50 million memory allocations per machine. In
the benchmark, each thread allocates and clears 10 heap-memory
regions, of a random size between 1 byte and 16 kilobytes, yields
witha Sleep (0), clears and frees the 10 regions, and then loops.

We measured all configurations of partitioning per-machine work
over 1, 2, 5, or 10 processes and 1, 5, 10, 50, 100, 500, or 1000
concurrent threads in each process. These configurations ran on the
entire, dedicated cluster, spreading 6.4 billion allocations between
128 to 1,280,000 threads, each at 100% CPU utilization when run-
ning. The benchmark took between 30 seconds and 4 minutes to
run, depending on the configuration—not counting unpredictable
delays and high variance caused by the cluster’s job scheduler.

Using a FayLINQ query to measure total allocated memory added
an overhead of 1% to 11% (mean 7.8%, std.dev. 3.8%) to the bench-
mark running time. The numbers matched our expectation: per al-
location, the benchmark spent approximately a couple of thousand
cycles, to which Fay tracing added a couple of hundred cycles, as
per Figure 2—but, as the number of processes and threads grew,
increased context switches and other costs started masking some
of Fay’s overhead. The time to initialize tracing, and install Fay
probes, grew as processes increased from 1 to 10, going from 1.5
to 7 seconds. Whether or not Fay tracing was enabled, the bench-
mark had similar variance in CPU time (mean std.dev. 2%, max
std.dev. 6%) and wall-clock time (mean std.dev. 10%, max std.dev.
33%), both per-process and per-thread.

We exercised the fault-tolerance of Fay tracing by randomly killing
threads, processes, or machines running the benchmark. When a
thread dies, all its thread-local Fay probe state is lost, if it has
not already been sent as a trace event. Machine-local Fay aggre-
gation continued unimpeded by failure of benchmark threads or
processes. Even upon the failure of machines, the Dryad fault-
tolerance mechanisms would ensure that cluster-level aggregation
continued. Thus, the results of our FayLINQ query were perturbed
in proportion to our violence. In addition, the data lost for any
thread could be bounded by having Fay probes periodically send
off their data as ETW trace events. For our benchmark FayLINQ
query, probe state was sent as trace events every 100 memory allo-
cations, at the cost of 1% extra Fay tracing overhead.

In the limit, a trace event might need to be sent at every tracepoint
invocation, if the work of a tracing query was completely unsuited
to Fay probe processing. To assess the benefits of early aggregation
and FayLINQ optimizations, we modified our benchmark to mea-
sure such high-frequency trace events. With nearly half-a-million
Fay trace events a second, and no probe processing, the bench-
mark’s tracing overhead increased to between 5% and 163% (aver-
age 67%, std.dev. 45%). However, most of those trace events were
lost, and not accounted for in the result of our FayLINQ query.

These lost trace events were surprising, since our Fay implemen-
tation minimizes the risk of data loss, both by dynamically tun-
ing ETW buffer size, and also by running time-critical Fay ac-
tivity like trace-event processing on Windows threads with high
enough priority. Upon inspection, we discovered that the real-time,
machine-local FayLINQ aggregation process that converts ETW
trace events to .NET objects—rather slowly, on a single thread—
was completely unable to handle the high event rate. FayLINQ can
be manually directed to stream trace events directly to disk, into
ETW log files, processed by later, batch-processing parts of the
query plan. We attempted this next, but failed again: each ETW
log file record is about 100 bytes, which at 50 million events, in
less than four minutes, exceeded our disk bandwidth. Even though
consuming data at high rates is intrinsically difficult, these results
clearly indicated that FayLINQ was lacking in its support for high-
event-rate tracing. So, we enhanced Fay with a custom, real-time

ETW consumer thread that efficiently streams just the Fay payload
of ETW events (4 bytes in our benchmark) directly to disk. After
this, FayLINQ could return correct query results, by generating a
plan that processes the disk files subsequent to the benchmark run.

To further evaluate the benefits of FayLINQ query-plan opti-
mizations, we reran the experiment from Section 5.2.2 with the
term-rewriting in Figure 10 turned off. While Fay tracing pre-
viously had no measurable performance effects, unoptimized
tracing significantly increased the workload completion time, e.g.,
due to the addition of (a near-constant) 10% of CPU time being
spent on kernel-mode trace event processing. Also, the lack of
early-aggregation optimizations lead to a high event rate (more
than 100,000 events/second, for some phases of the workload).
Thus, we again had to direct FayLINQ to create query plans that
stored trace events first on disk, and finished processing later. Even
then, several times more data was received and processed at the
higher-levels of the FayLINQ aggregation pipeline.

6. RELATED WORK

Fay is motivated by the many attractive benefits of the DTrace plat-
form [11], while Fay’s fundamental primitives are more like those
of SystemTap [45] and Ftrace [48].

Fay makes use of, and integrates with a number of technologies
from Microsoft Windows [49], including Event Tracing for Win-
dows [41], PowerShell [55], Vulcan [54], Hotpatching [34], Struc-
tured Exception Handling [44], and the Driver Model [40].

Dynamic Instrumentation Systems Fay is related to several
systems that perform dynamic instrumentation: KLogger [20],
PinOS [8], Valgrind [39], scalable tracing on K42 [62], Ftrace and
SystemTap on Linux [45, 48], Solaris DTrace [11], the NTrace
prototype [42], and Detours for the Win32 interface [25].

The Fay probe dispatcher is related to new tracing tools that make
use of inline mechanisms, not traps. On Linux, Ftrace [48] provides
tracing based on fast, inline hooks placed by compiling the kernel
with special flags. On Windows, the NTrace research project lever-
ages hotpatching [42], but does so via a custom, modified kernel.
Compared to Fay, the Ftrace and NTrace mechanisms offer more
limited functionality, are likely to be less efficient, and provide nei-
ther safe extensibility nor a high-level query interface.

Safe Operating Systems Extensions Fay is an example of a
system that implements safe operating systems extensions using
software-based techniques [6]. This is not a new idea. Indeed,
Fay has striking similarities to the SDS-940 Informer profiler
developed at the end of the 1960’s [15]. Other systems and
techniques for providing safe system extensibility include Typed
Assembly Language [37], Proof-Carrying Code [38], as well as
Software-based Fault Isolation (SFI) [61], and its implementations
in MiSFIT [52], Native Client [64], and similar systems [18].

Declarative Tracing and Debugging The Fay integration with
DryadLINQ is related to several prior efforts to support declarative
or relational queries of software execution traces. In particular, Fay
is related to declarative tracepoints [12], PQL [31], and PTQL [23],
and also to work in aspect-oriented programming [3].

In the trade-off between creating a domain-specific language and
using a generic language, such as LINQ, we have opted towards
the latter. Embedded knowledge about the semantics of traces (e.g.,

time, procedure nesting, etc.) can make the evaluation of some
queries more efficient. Probes should be able to aggregate and re-
duce data as much as possible, while relegating expensive compu-
tations to external systems. Here, we believe that FayLINQ strikes
a good balance.

Large-scale, Distributed Tracing Large-scale, distributed trac-
ing, data collection and debugging [28, 53] is a highly active area,
with several existing, attractive systems, and one deployed across a
billion machines [22]. Of particular relevance are recent systems,
like Chopstix [7], and Flight data recorder [60], as well as their pre-
decessor DCPI [9] and its recent distributed analogue GWP [46].
Similarly, earlier work such as Magpie [5] on tracing requests
across activities has recently been extended to the datacenter [50].
Finally, also highly relevant is work from the high-performance
community for tracing in parallel systems [27, 32], and the tech-
niques of stream-processing platforms [4]. Flume [21] is a log
collection system that allows the transformation and filtering of
log data, similar in some aspects to simple FayLINQ queries.

7. CONCLUSIONS

Fay is a flexible platform for the dynamic tracing of distributed sys-
tems. Fay is applicable to both user- and kernel-mode activity; our
Fay implementation for x86-64 Windows can be applied even to
live, unmodified production systems. Users can utilize Fay trac-
ing through several means, which include traditional scripting. Fay
users can also safely extend Fay with new, efficient tracing primi-
tives, without affecting the reliability of traced systems.

Distinguishing Fay from previous tracing platforms is its disaggre-
gated execution, even within a single machine, as well as its safe,
efficient extensibility, and its deep integration with a high-level lan-
guage and distributed runtime in FayLINQ—all of which facilitate
large-scale execution trace collection and analysis.

Building on the above, FayLINQ provides a unified, declarative
means of specifying what events to trace, as well as the aggregation,
processing, and analysis of those events. As such, FayLINQ holds
the potential to greatly simplify the investigation of performance,
functionality, or reliability issues in distributed systems. Through
benchmarks and experiments, we have demonstrated the efficiency
and flexibility of Fay distributed tracing, and also shown how a few
simple FayLINQ queries can offer the same functionality as that
provided by custom mechanisms in other tracing platforms.

Acknowledgments

We thank the SOSP PC for their useful comments and our shep-
herd, Greg Ganger, for his gracious help. Fay’s hotpatch-based
instrumentation was designed and implementated in collaboration
with the Microsoft Windows Fundamentals group: Anshul Dhir,
Haifeng He, Bradford Neuman, and Dragos Sdmbotin contributed
directly to the implementation, starting from a prototype by Neeraj
Singh. Gloria Mainar-Ruiz helped with the Fay XFI implemen-
tation and experiments. Jacob Gorm Hansen and Jorrit Herder
worked on previous XFI variants and applications in Windows, re-
spectively, for KMDF device drivers and for safe kernel-mode in-
terrupt handlers for UMDF device drivers. The DryadLINQ inte-
gration benefited from work by Pradeep Kumar Gunda. Jon Currey
helped with cluster-experiment infrastructure. Michael Vrable pro-
vided camera-ready support. The up-to-date version of SystemTap
that we measured was provided by William Cohen, of Red Hat, Inc.

8. REFERENCES

[1] J. Ansel, P. Marchenko, U. Erlingsson, E. Taylor, B. Chen,
D. L. Schuff, D. Sehr, C. L. Biffle, and B. Yee.
Language-independent sandboxing of just-in-time
compilation and self-modifying code. In PLDI, 2011.
Apache. Hadoop project.
http://hadoop.apache.org/.
P. Avgustinov, J. Tibble, E. Bodden, L. Hendren, O. Lhotak,
0. de Moor, N. Ongkingco, and G. Sittampalam. Efficient
trace monitoring. In OOPSLA, 2006.
M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker. Fault-tolerance in the Borealis distributed
stream processing system. In SIGMOD, 2005.
P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for request extraction and workload modelling. In
OSDI, 2004.
B. N. Bershad, S. Savage, P. Pardyak, D. Becker,
M. Fiuczynski, and E. G. Sirer. Protection is a software issue.
In HotOS, 1995.
S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. Peterson.
Lightweight, high-resolution monitoring for troubleshooting
production systems. In OSDI, 2008.
P. P. Bungale and C.-K. Luk. PinOS: A programmable
framework for whole-system dynamic instrumentation. In
VEE, 2007.
M. Burrows, U. Erlingsson, S.-T. A. Leung, M. T.
Vandevoorde, C. A. Waldspurger, K. Walker, and W. E.
Weihl. Efficient and flexible value sampling. In ASPLOS,
2000.
B. Cantrill. Hidden in plain sight. ACM Queue, 4, 2006.
B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal.
Dynamic instrumentation of production systems. In USENIX
Annual Technical Conf., 2004.
Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, and
L. Luo. Declarative tracepoints: A programmable and
application independent debugging system for wireless
sensor networks. In SenSys, 2008.
C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum. FlumeJava: Easy,
efficient data-parallel pipelines. In PLDI, 2010.
J. Dean and S. Ghemawat. MapReduce: A flexible data
processing tool. Comm. ACM, 53(1), 2010.
P. Deutsch and C. A. Grant. A flexible measurement tool for
software systems. In /FIP, 1971.
Eclipse. Callgraph plug-in.
http://wiki.eclipse.org/Linux_Tools_
Project/Callgraph/User_Guide.
F. C. Eigler. Systemtap tutorial, Dec. 2010. http:
//sourceware.org/systemtap/tutorial/.
U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: Software guards for system address spaces. In
OSDI, 2006.
U. Erlingsson, M. Manasse, and F. McSherry. A cool and
practical alternative to traditional hash tables. In Workshop
on Distributed Data and Structures, 2006.
Y. Etsion, D. Tsafrir, S. Kirkpatrick, and D. G. Feitelson.
Fine grained kernel logging with KLogger: Experience and
insights. In EuroSys, 2007.
Flume: Open source log collection system.
http://github.com/cloudera/flume.
K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,
V. Orgovan, G. Nichols, D. Grant, G. Loihle, and G. Hunt.

2

—

3

—

[4

—_

(3]

(6]

[7

—

(8]

(9]

(10]
(11]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

Debugging in the (very) large: Ten years of implementation
and experience. In SOSP, 2009.

S. F. Goldsmith, R. O’Callahan, and A. Aiken. Relational
queries over program traces. In OOPSLA, 2005.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In ACM Intl. Conf. on
Management of Data, 1993.

G. Hunt and D. Brubacher. Detours: Binary interception of
Win32 functions. In USENIX Windows NT Symposium, 1998.
M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed data-parallel programs from sequential building
blocks. In EuroSys, 2007.

G. L. Lee, M. Schulz, D. H. Ahn, A. Bernat, B. R.

de Supinskil, S. Y. Ko, and B. Rountree. Dynamic binary
instrumentation and data aggregation on large scale systems.
Intl. Journal on Parallel Programming, 35(3), 2007.

B. Liblit, A. Aiken, A. X. Zheng, and M. 1. Jordan. Bug
isolation via remote program sampling. PLDI, 38(5), 2003.
F. Marguerie, S. Eichert, and J. Wooley. LINQ in action.
Manning Publications Co., 2008.

T. Marian, A. Sagar, T. Chen, and H. Weatherspoon. Fmeter:
Extracting Indexable Low-level System Signatures by
Counting Kernel Function Calls. Technical Report
http://hdl.handle.net/1813/23568, Comnell
University, Computing and Information Science, 2011.

M. Martin, B. Livshits, and M. S. Lam. Finding application
errors and security flaws using PQL: A program query
language. In OOPSLA, 2005.

M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia
distributed monitoring system: Design, implementation and
experience. Intl. Journal on Parallel Computing, 30, 2003.
F. McSherry, Y. Yu, M. Budiu, M. Isard, and D. Fetterly.
Scaling Up Machine Learning. Cambridge U. Press, 2011.
Microsoft Corp. Introduction to hotpatching. Microsoft
TechNet, 2003.

Microsoft Corp. Kernel patch protection: Frequently asked
questions. Windows Hardware Developer Central, 2006.
http://www.microsoft.com/whdc/driver/
kernel/64bitpatch_FAQ.mspx.

Microsoft Corp. WDK and developer tools. Windows
Hardware Developer Central, 2010. http://www.
microsoft.com/whdc/DevTools/default.mspx.
G. Morrisett, D. Walker, K. Crary, and N. Glew. From
System F to typed assembly language. In POPL, 1998.

G. C. Necula. Proof-carrying code. In POPL, 1997.

N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In PLDI,
2007.

W. Oney. Programming the Microsoft Windows Driver
Model. Microsoft Press, 2002.

L. Park and R. Buch. Improve debugging and performance
tuning with ETW. MSDN Magazine, April 2007.

J. Passing, A. Schmidt, M. von Lowis, and A. Polze. NTrace:
Function boundary tracing for Windows on IA-32. In
Working Conference on Reverse Engineering, 2009.

S. Peter, A. Baumann, T. Roscoe, P. Barham, and R. Isaacs.
30 seconds is not enough!: A study of operating system
timer usage. In EuroSys, 2008.

M. Pietrek. A crash course on the depths of Win32 structured
exception handling. Microsoft Systems Journal, 1997.

V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Keniston, and

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

B. Chen. Locating system problems using dynamic
instrumentation. In Ottawa Linux Symposium, 2005.

G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt.
Google-wide profiling: A continuous profiling infrastructure
for data centers. IEEE Micro, 30(4), 2010.

T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A.
Wong, J.-L. Baer, B. N. Bershad, and H. M. Levy. The
structure and performance of interpreters. In ASPLOS, 1996.
S. Rostedt. Debugging the kernel using Ftrace. Iwn.net, 2009.
M. E. Russinovich, D. A. Solomon, and A. Ionescu.
Microsoft Windows Internals. Microsoft Press, 2009.

B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a
large-scale distributed systems tracing infrastructure.
Technical Report 2010-1, Google Inc., 2010.

K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark.
Improving prediction for procedure returns with
return-address-stack repair mechanisms. In MICRO, 1998.
C. Small and M. L. Seltzer. MiSFIT: Constructing safe
extensible systems. IEEE Concurrency: Parallel, Distributed
and Mobile Computing, 6(3), 1998.

T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and

K. Whitehouse. Macrodebugging: Global views of
distributed program execution. In SenSys, 2009.

A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary
transformation in a distributed environment. Technical
Report MSR-TR-2001-50, Microsoft Research, 2001.

W. Stanek. Windows PowerShell(TM) 2.0 Administrator’s
Pocket Consultant. Microsoft Press, 2009.

M. Strosaker. Sample real-world use of SystemTap. http:
//zombieprocess.wordpress.com/2008/01/
03/sample-real-world-use-of-systemtap/.
SystemTap. Examples. http:
//sourceware.org/systemtap/examples/.
SystemTap. Bug 2725: function(‘“*”’) probes sometimes
crash & burn, June 2006. http://sources.redhat.
com/bugzilla/show_bug.cgi?id=2725.

G. Varghese and A. Lauck. Hashed and hierarchical timing
wheels. IEEE/ACM Transactions on Networking, 5(6), 1997.
C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. Lu,

J. Lee, Y.-M. Wang, and R. Roussev. Flight data recorder:
Monitoring persistent-state interactions to improve systems
management. In OSDI, 2006.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. In SOSP, 1993.

R. W. Wisniewski and B. Rosenburg. Efficient, unified, and
scalable performance monitoring for multiprocessor
operating systems. In Supercomputing, 2003.

D. B. Woodard and M. Goldszmidt. Model-based clustering
for online crisis identification in distributed computing.
Technical Report TR-2009-131, MSR, 2009.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,

T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar. Native
client: A sandbox for portable, untrusted x86 native code.
Comm. ACM, 53(1):91-99, 2010.

Y. Yu, P. K. Gunda, and M. Isard. Distributed aggregation for
data-parallel computing: Interfaces and implementations. In
SOSP, 2009.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. G.
Kumar, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing using a
high-level language. In OSDI, 2008.

