
1

Large-scale Machine Learning using DryadLINQ
Mihai Budiu, Dennis Fetterly, Michael Isard,

Frank McSherry, and Yuan Yu

This chapter describes DryadLINQ, a general-purpose system for large scale

data-parallel computing, and illustrates its use on a number of machine

learning problems.

The main motivation behind the development of DryadLINQ was to make

it easier for non-specialists to write general purpose, scalable programs that

can operate on very large input datasets. In order to appeal to non-specialists

we designed the programming interface to use a high level of abstraction that

insulates the programmer from most of the detail and complexity of parallel

and distributed execution. In order to support general-purpose computing

we embedded these high-level abstractions in .NET, giving developers access

to full-featured programming languages with rich type systems and proven

mechanisms (such as classes and libraries) for managing complex, long-lived

and geographically distributed software projects. In order to support scal-

ability over very large data and compute clusters the DryadLINQ compiler

generates code for the Dryad runtime, a well-tested and highly efficient dis-

tributed execution engine.

As machine learning moves into the industrial mainstream and operates

over diverse data types including documents, images and graphs, it is in-

creasingly appealing to move away from domain-specific languages like Mat-

lab and towards general-purpose languages that support rich types and stan-

dardized libraries. The examples in this chapter demonstrate that a general-

purpose language such as C# supports effective, concise implementations

of standard machine learning algorithms, and that DryadLINQ efficiently

scales these implementations to operate over hundreds of computers and

very large datasets primarily limited by disk capacity.

2 Large-scale Machine Learning using DryadLINQ

1.1 Manipulating datasets with LINQ

We use Language Integrated Queries, or LINQ (Microsoft, 2010), as our

programming model for writing large-scale machine learning applications.

LINQ adds high level declarative data manipulation to many of the .NET

programming languages, including C#, Visual Basic and F#. This section

provides a short introduction to LINQ.

LINQ comprises a set of operators to manipulate collections of .NET ob-

jects. The operators are integrated seamlessly in high level .NET program-

ming languages, giving developers direct access to all the .NET libraries as

well the traditional language constructs such as loops, classes, and modules.

The collections manipulated by LINQ operators can contain any .NET type,

making it easy to compute with complex data such as vectors, matrices, and

images. As it will be shown in the rest of this chapter, many machine learning

algorithms can be naturally and elegantly expressed using LINQ.

Collection

.NET objects

Figure 1.1 LINQ data model: collections of typed values.

LINQ datasets are .NET collections. Technically, a .NET collection of

values of type T is a data type which implements the predefined interface

IEnumerable<T>. Many commonly used data structures such as arrays, lists,

hash-tables, and sets are such collections. The elements of a collection can

be any type, including nested collections. Figure 1.1 illustrates the abstract

LINQ data model. We will see later that this model can be naturally ex-

tended to accommodate very large collections that span multiple computers.

The IEnumerable interface provides access to an iterator, used to enumerate

the elements of the collection. Programmers can use these iterators to scan

over the data sets.

To simplify programming, LINQ provides a large set of operators to ma-

nipulate collections, drawn from common data parallel programming pat-

terns. All of these operators are functional : they transform input collections

to completely new output collections, rather than update the existing collec-

tions in place. Although there are many primitive LINQ operators (and the

users can easily add more), all of them can be seen as variants of the 7 oper-

1.1 Manipulating datasets with LINQ 3

ators listed in Table 1.1. Readers familiar with the SQL database language

will find these operators quite natural.

Operation Meaning

Where (Filter) Keep all values satisfying a given property.
Select (Map) Apply a transformation to each value in the collection.
Aggregate (Fold, Reduce) Combine all values in the collection to produce a

single result (e.g., max).
GroupBy Create a collection of collections, where the elements in each inner

collection all have a common property (key).
OrderBy (Sort) Order the elements in the collection according to some prop-

erty (key).
SelectMany (Flatten) Generates a collection for each element in the input (by

applying a function), then concatenates the resulting collections.
Join Combine the values from two collections when they have a com-

mon property.

Table 1.1 Essential LINQ operators.

Most LINQ operators take as a parameter at least one function used to

process the elements in the collection. These functions are most commonly

anonymous functions, a convenient .NET shorthand written as x => f(x)

for the function mapping a single variable x to a result f(x). The anonymous

function bodies can invoke user defined methods, or may simply consist of

primitive .NET operations. For example, the anonymous function x => x%2

computes the value of the input argument modulo 2. Anonymous functions

with multiple inputs are written by parenthesizing the inputs together, as

in (x,y,z) => f(x,y,z) for the case of three inputs.

To be concrete, table 1.2 shows the result of applying some LINQ oper-

ators to the collection C = (1,2,3,4,5). The only example that may not be

self-explanatory in Table 1.2 is Join, the only operation that we have shown

that operates on two collections. Join receives three function arguments: (1)

the first function argument (in our example x=>x) computes a key value for

each element in the left collection; (2) the second function (x=>x-4) com-

putes the key value for each element in the right collection; (3) finally, the

third function (x,y)=>x+y reduces pairs of values, where x is from the first

collection and y from the second collection. This function is invoked only for

pairs of values that have matching keys. In our example, the only matching

pair of values is 1 and 5, whose keys are both 1 (1 and repectively 5-4), and

thus the result of the Join is a collection with a single element 1+5.

The final feature of LINQ we introduce is the IQueryable<T> interface,

deriving from the IEnumerable<T> interface. An object of type IQueryable<T>

4 Large-scale Machine Learning using DryadLINQ

Operation Result

C.Where(x => x > 3) (4,5)
C.Select(x => x + 1) (2,3,4,5,6)
C.Aggregate((x,y) => x+y) 15
C.GroupBy(x => x % 2) ((1,3,5), (2,4))
C.OrderBy(x => -x) (5,4,3,2,1)
C.Select(x => Factors(x)) ((1), (1, 2), (1, 3), (1, 2, 4), (1, 5))
C.SelectMany(x => Factors(x)) (1, 1, 2, 1, 3, 1, 2, 4, 1, 5)
C.Join(C, x=>x, x=>x-4, (x, y)=>x+y) (6)

Table 1.2 Examples using LINQ operators on collection C={1,2,3,4,5}.
Factors is a user defined function.

represents a query (i.e., a computation) that can produce a collection with

elements of type T. The queries are not evaluated until an element or ag-

gregate is required from the collection1. Applying LINQ operators to an

IQueryable object produces a new IQueryable object, describing the com-

putation required to produce the new result.

Importantly, each IQueryable<T> can specify a LINQ provider, capable of

examining the query and choosing from many different execution strategies.

Many LINQ providers exist: PLINQ (Duffy, 2007) executes queries on a

single computer using multiple CPU cores, LINQ to SQL translates LINQ

queries to SQL statements executed on a database engine. DryadLINQ (Yu

et al., 2008) itself is simply a LINQ provider which executes the queries on

a computer cluster.

1.2 k-means in LINQ

We now show how to use LINQ to implement a basic machine-learning

algorithm; in Section 1.3.4 we will show how this program can be executed

in a distributed fashion. k-means is a classical clustering algorithm which

divides a collection of vectors into k clusters. The clusters are represented by

their centroids; each vector belongs to the cluster with the nearest centroid.

This is an iterative computation, which is performed until a termination

criterion is reached.

LINQ collections can contain arbitrary types, and for our purposes we use

a class Vector providing all the usual vector arithmetic operations (addition,

scalar product, dot product, L2 norm, etc.). The Vector class could be pre-

1 Queries are a form of lazy evaluation of code; this is encountered in other programming
languages such as Haskell or Scheme.

1.2 k-means in LINQ 5

defined and imported from some shared library. We can then represent a

collection of vectors using IQueryable<Vector>.

We first define a useful auxiliary function NearestCenter that computes

the nearest neighbor of a vector from a set of vectors.

Vector NearestCenter(Vector point, IQueryable<Vector> centers)
{

var nearest = centers.First();
foreach (var center in centers)

if ((point - center).Norm() < (point - nearest).Norm())
nearest = center;

return nearest;
}

The k-means algorithm is a simple iterative computation: each iteration

groups the input vectors by their nearest center, and averages each group

to form the centers for the next iteration. The KMeansStep function below

computes the updated centers from the input vectors and current centers.

The LINQ code simply groups the input vectors using the nearest center as

a key, and uses aggregation to reduce each group to its average:

IQueryable<Vector> KMeansStep(IQueryable<Vector> vectors,
IQueryable<Vector> centers)

{
return vectors.GroupBy(vector => NearestCenter(vector, centers))

.Select(g => g.Aggregate((x,y) => x+y) / g.Count());
}

The k-means algorithm repeatedly invokes this step until a termination

condition is met. The example below uses a fixed number of iterations,

though more complex convergence criteria could be employed.

IQueryable<Vector> KMeans(IQueryable<Vector> vectors,
IQueryable<Vector> centers,
int iterations)

{
for (int i = 0; i < iterations; i++)

centers = KMeansStep(vectors, centers);

return centers;
}

The result of the KMeans function is a single object with type IQueryable<Vector>,

describing the computation necessary to produce the result from iterations

steps of our iterative algorithm. Only when the user attempts to enumerate

the result of KMeans will the query be executed and the iterations performed.

6 Large-scale Machine Learning using DryadLINQ

1.3 Running LINQ on a cluster with DryadLINQ

In order to perform computations on very large datasets we need to pool the

resources of multiple computers. Fortunately, the computations expressed

in LINQ are very easy to parallelize by distributing work to multiple com-

puters. The software stack that we have built for this purpose is shown

in Figure 1.2. In this text we particularly focus on two layers of this stack:

Dryad and DryadLINQ. Layers such as Cluster storage and Cluster services,

which provide a distributed file system and execution of processes on cluster

machines, are important, but are outside the scope of this chapter.

Windows
Server

Cluster services

Cluster storage

Dryad

DryadLINQ

Windows
Server

Windows
Server

Windows
Server

Machine Learning

Figure 1.2 Software stack for executing LINQ programs on a cluster of
computers.

1.3.1 Dryad

Dryad (Isard et al., 2007) is a software layer that coordinates the execution

of multiple dependent programs (processes) running on a computer cluster.

A Dryad job is a collection of processes that communicate with each other

through uni-directional channels. Dryad allows the programmer to describe

the computation as a directed acyclic multigraph, in which nodes represent

processes and edges represent communication channels. The requirement

that the graphs be acyclic may seem restrictive, but it enables Dryad to

provide automatically fault-tolerance, without any knowledge of the appli-

cation semantics. Moreover, we will see that many interesting algorithms

can be expressed as acyclic graphs. Figure 1.3 shows a hypothetical example

of a Dryad execution plan.

Dryad handles the reliable execution of the graph on a cluster. Dryad

schedules computations to computers, monitors their execution, collects and

reports statistics, and handles transient failures in the cluster by re-executing

1.3 Running LINQ on a cluster with DryadLINQ 7

Figure 1.3 Example of a hypothetical Dryad job execution plan; the nodes
are programs that execute, possibly on different computers, while the edges
are channels transporting data between the processes. The input and out-
put of the computation reside on the cluster storage medium..

failed or slow computations. Dryad jobs execute in a shared-nothing environ-

ment: there is no implicit shared memory or disk state between the various

processes in a Dryad job; the only communication medium between processes

are the channels themselves.

1.3.2 DryadLINQ

We have introduced two essential ingredients for implementing large-scale

cluster computation: a parallel language (LINQ) and an execution environ-

ment for clusters (Dryad). We now describe DryadLINQ, a compiler and

runtime library that bridges the gap between these two layers. DryadLINQ

translates programs written in LINQ into Dryad job execution plans that

can be executed on a cluster by Dryad, and transparently returns the results

to the host application.

DryadLINQ presents the same data model as LINQ to the program-

mers. But, in order to distribute the computation across multiple computers,

DryadLINQ internally partitions the data into disjoint parts, as shown in

Figure 1.4. The original collections become collections of partitions; the par-

titions being some (smaller) LINQ collections that reside on individual com-

puters. (The partitions residing on the cluster storage medium can optionally

be replicated on several computers each, for increased fault-tolerance.)

DryadLINQ implements LINQ operators over partitioned collections. Fig-

ure 1.5 shows how this is done for some of the basic LINQ operators from

Table 1.1. Operators like Select, SelectMany and Where are the easiest to

implement, since they operate on individual elements; they can be applied to

individual parts regardless of the partitioning scheme. The GroupBy requires

8 Large-scale Machine Learning using DryadLINQ

Partition

Collection

.NET objects

Figure 1.4 DryadLINQ data model: collections of typed values partitioned
among several computers. Compare with Figure 1.1.

records with the same key to be co-located, so it is implemented in two steps:

(1) repartition the collection using a deterministic hash function applied to

the grouping key; (2) after repartitioning all elements with the same key

are present on the same computer, which can perform a standard LINQ

GroupBy on the local data to produce the necessary collection of groups.

Aggregation using an associative function can be done hierarchically: in a

first phase the data in each part is aggregated independently, in subsequent

phases subsets of intermediate results are combined, until in the last phase

a single computer performs the final aggregation.

Figure 1.6 shows the translation for two of LINQ operators that generate

binary collection operations. The first example results from the nested usage

of collections (when an inner collection is used for all elements in the outer

collection, as we will see in Section 1.3.4): in the generated Dryad graph the

inner collection is broadcast to all partitions of the outer collection.

The second example shows an implementation of the binary Join opera-

tor. Similar to GroupBy it is implemented using deterministic hash function,

ensuring that elements with matching keys end up in corresponding parti-

tions.

The Dryad job execution plans generated by DryadLINQ are composable:

the output of one graph can become the input of another one. In fact, this

is exactly how complex LINQ queries are translated: each operator is trans-

lated to a graph independently, and the graphs are then concatenated. The

graph generation phase is followed by a graph rewriting phase that performs

optimizations, and which can substantially alter the shape of the job execu-

tion plan. As a simple example, sequences of Select and Where operations

can be pipelined and executed within a single vertex.

In general, during the computation, the collection elements must be moved

between computers, so the in-memory data structures need to be serialized

to a shared physical medium, either a disk or the network. DryadLINQ

exploits its full knowledge of the types in the collections to automatically

1.3 Running LINQ on a cluster with DryadLINQ 9

Select
Where
SelectMany

GroupBy

Aggregate

Figure 1.5 Dryad jobs generated by DryadLINQ for the simplest LINQ
operators.

generate efficient serialization and de-serialization code. The user can always

replace the default serialization routines with custom ones, but this is seldom

needed. DryadLINQ also optionally compresses data before writing it to disk

or transmitting it across the network.

1.3.3 Map-Reduce and DryadLINQ

Any Map-Reduce (Dean and Ghemawat, 2004) program can be easily trans-

lated into a DryadLINQ program. In consequence, any algorithm expressed

using the Map-Reduce framework can be also implemented in DryadLINQ.

The Map-Reduce approach requires the programmer to specify “map” and

“reduce” functions, where the map function transforms each input record

to a list of keyed intermediate records, and the reduce function transforms

a group of intermediate records with the same key into a list of output

records2.

IQueryable<R> MapReduce<S,T,R,K>(
IQueryable<S> records,

2 Map-Reduce as defined by Google specifies that a reducer will receive the records sorted on
their keys; in our implementation each reducer is only given all the records that have the
same key. DryadLINQ is flexible enough to emulate the exact behavior of Map-Reduce as
well, but we omit this implementation for simplicity.

10 Large-scale Machine Learning using DryadLINQ

Nested query
(collections c, m)
c.Where(e =>
 new HashSet(m).Contains(e))

Join

c
m

left right

Figure 1.6 Dryad jobs generated by DryadLINQ for other LINQ operators.

Func<S,IEnumerable<KeyValuePair<K,T>> mapper,
Func<IGrouping<K,T>,IEnumerable<R>> reducer)

{
return records.SelectMany(mapper)

.GroupBy(temp => temp.Key, temp => temp.Value)

.SelectMany(reducer);
}

There are some simple but noteworthy observations about using LINQ

and DryadLINQ to implement Map-Reduce:

The LINQ version of Map-Reduce is strongly typed (the type of the ele-

ments in the input and output is known at compilation time), so more errors

are caught at compilation time (this feature becomes very useful once pro-

grams become large). LINQ also provides complete integration with .NET

libraries and existing integrated development environments; this immedi-

ately leverages the effort put in to reusable libraries and development tools.

Finally, as LINQ supports many providers, the computation can be immedi-

ately executed across a variety of LINQ providers: multicore PLINQ, LINQ

to SQL, and DryadLINQ.

When using DryadLINQ, in particular, a few additional advantages emerge:

Due to strong typing, DryadLINQ can generate very efficient serialization

code for all objects involved, without the need to resort writing to man-

ual serialization code, such as Protocol Buffers (Google, 2010). By using

1.3 Running LINQ on a cluster with DryadLINQ 11

DryadLINQ to execute the Map-Reduce programs we inherit all of DryadLINQ’s

optimizations: computations are placed close to the data, multiple Map-

Reduce programs can be composed, and optimizations can be applied across

the Map-Reduce boundaries. Map-Reduce computations can even be mixed

in with other LINQ computations that are difficult to express in Map-

Reduce (for example, Joins). Finally, the eager aggregation performed by

DryadLINQ discussed in Section 1.3.4 is a generalization of the concept of

combiners and reducers that Map-Reduce uses, but DryadLINQ can auto-

matically infer the combiners and reducers in many cases (Yu et al., 2009).

1.3.4 k-means Clustering in DryadLINQ

The power of DryadLINQ is illustrated by how little the k-means program

from Section 1.2 needs to change to be executed on a cluster of computers.

To invoke DryadLINQ we only need to change the input collection of a query

to be one of the partitioned collections shown in Figure 1.4.

While using DryadLINQ is easy for the programmer, under the hood many

optimizations concur to provide an efficient execution of the queries. Recall

the core of our k-means iteration:

IQueryable<Vector> KMeansStep(IQueryable<Vector> vectors,
IQueryable<Vector> centers)

{
return vectors.GroupBy(vector => NearestCenter(vector, centers))

.Select(g => g.Aggregate((x,y) => x+y) / g.Count());
}

The GroupBy operation at the heart of the k-means aggregation collects

a very large amount of data; even if the input vectors are initially spread

over hundreds of balanced partitions, if half of them belong to a single

cluster it would seem that the runtime would need to bring them to a single

computer in order to compute the average. (This is the problem of data skew,

which is notoriously difficult to handle in a generic way.) Such a strategy

would severely overload the computer computing the centroid for the large

group. However, the DryadLINQ optimizer uses a robust eager aggregation

algorithm to implement this particular computation(Yu et al., 2009). By

inspecting the code for the centroid computation, DryadLINQ can infer that

the computation of the average is associative and commutative. DryadLINQ

thus generates a job execution plan that uses two-level aggregation (similar

to the plan shown at the bottom Figure 1.5): each computer builds local

groups with the local data and only sends the aggregated information about

these groups to the next stage; the next stage computes the actual centroid.

12 Large-scale Machine Learning using DryadLINQ

DryadLINQ can often determine automatically whether a computation is

associative and commutative; when this is unfeasible, the user can employ

the C# annotation mechanism to tag functions. For example, we tagged

the vector addition operation with the [Associative] attribute for this

optimization to work in our case (not shown). Figure 1.7 shows the plan

that is generated for this program.

Initial Centers

Vectors

Compute local nearest center
Group on center

Compute nearest center
Group on center
Compute new centers

Merge new centers

Iter 2

Iter 1

350B

100GB

24KB

350B

100GB

24KB

350B

Figure 1.7 Dryad job execution plan generated for two iterations of the
k-means algorithm on ten dimensional vectors, with k = 10. The vector
data is split into three partitions. The boxes with dotted lines show the
amount of data exchanged between stages for a 100GB set of vectors.

The key selection function for the GroupBy operation uses the centers from

the previous iteration, using the nested pattern from Figure 1.6. DryadLINQ

produces a plan that updates the centers once, and broadcasts the results

once to each part, where they are re-used. This optimization also allows us

to chain multiple iterations of k-means together, without interrupting the

computation on the cluster. This reduces the overhead for launching jobs

on the cluster and allows DryadLINQ to optimize execution across iteration

boundaries.

Measurements

For our measurements we use a collection of random vectors with 10 di-

mensions whose total size is 100GB. Each vertex computes k pre-aggregated

cluster centers, each exactly 10 doubles (one per dimension), which are then

1.3 Running LINQ on a cluster with DryadLINQ 13

exchanged, aggregated, and re-broadcast to each of the vertices in the next

stage in the following iteration, independent of the number or distribution

of vectors on each computer. The main bottleneck in data-parallel computa-

tions tends to be the data exchange, where the shared network fabric must

support many point-to-point data transfers. The local operations are limited

by the speed of reading data from the local disks, and do only modest pro-

cessing. We are thus presenting measurements just for the amount of data

exchanged across the network. Figure 1.7 shows the amount of data read

by each stage; the output of the first stage is only 24KB (we have used 31

partitions in this particular execution). The majority of the time is spent in

the first stage of each iteration (computing local centers).

1.3.5 Decision Tree Induction in DryadLINQ

For our next DryadLINQ example, we consider the problem of computing

a decision tree. We use a binary decision tree to classify records with the

following structure:

class Record
{

bool label; // class the record belongs to
bool[] attributes; // attributes to classify on

}

A decision tree is a tree of attribute choices, terminating in leaves with

class labels on them. The tree is used to classify records by starting from the

root, examining a specified attribute at each internal node, proceeding down

the branch indicated by the attribute’s value, and continuing recursively

until a leaf (and class label) is reached. We will represent a decision tree with

a dictionary that maps tree node indices (integer values) to attribute indices

in the attribute array: given a node index node in the tree, tree[node]

is an index in the attributes array, indicating which attribute is tested by

the node.

// compute index of node in (partial) tree reached by a record
int TreeWalk(Record record, Dictionary<int, int> tree)
{

var node = 0;
while (tree.ContainsKey(node))

node = 2 * node + (record.attributes[tree[node]] ? 1 : 2);

return node;
}

The most common algorithm to induce a decision tree starts from an

14 Large-scale Machine Learning using DryadLINQ

empty tree and a set of records with class labels and attributes with values.

The algorithm repeatedly extends the tree by grouping records by their

current location under the partial tree, and for each such group determining

the attribute resulting in the greatest reduction in conditional entropy (of

the class label given the attribute value). For example, we might write:

records.GroupBy(record => TreeWalk(record, tree))
.Select(group => FindBestAttribute(group));

While this approach makes perfect sense in a single-computer setting, in

the data-parallel setting it has the defect that all of the input records must

be reshuffled in each iteration. Moreover, single computers can be overloaded

when many records map to a single node in the tree (for example, during the

first few levels of the tree) — the data skew issue discussed in Section 1.3.4.

Instead, we consider an alternate “bottom up” algorithm with a highly

parallel execution plan. We use (but do not show here) a function CondEntropy

computing the conditional entropy of a list of lists of counts.

IEnumerable<Pair<int, int>>
DecisionTreeLayer(IQueryable<Record> data, Dictionary<int, int> tree)
{

// emit a 4-tuple for each attribute,
var a = data.SelectMany(x => x.attrs.Select((y, i) => new

{
prefix = TreeWalk(x, tree),
label = x.record.label,
index = i,
value = y

}));

// count unique quadruples
var b = a.GroupBy(x => x)

.Select(g => new { g.Key, count = g.Count() });

// compute conditional entropy for each attribute in each prefix
var c = b.GroupBy(x => new { x.Key.prefix, x.Key.index })

.Select(x => new
{

x.Key.prefix,
x.Key.index,
entropy = CondEntropy(x.GroupBy(x => x.value))

});

// group by prefix, return min-entropy attribute
return c.GroupBy(x => x.prefix)

.Select(g => g.OrderByDescending(y => y.entropy).First())

.Select(x => new Pair<int, int>(x.prefix, x.index));
}

1.3 Running LINQ on a cluster with DryadLINQ 15

The computation proceeds in four steps:

1. The first step replaces each record with a collection of quadruples, one

for each of the record’s attributes. The quadruple contains the record’s

location in the current tree, the record’s class label, the index of the

corresponding attribute, and the attribute’s value.

2. The second step aggregates all identical quadruples, counting the number

of occurrences of each and performing the most significant data reduction

in the computation.

3. The third step groups the counts from the second step, using the pair

(tree prefix, attribute index) as the key and then computes the entropy

of these groups (which is the conditional entropy of this attribute).

4. Finally, the fourth step performs another grouping on the set identifier,

selecting the attribute with the lowest conditional entropy (by using the

OrderBy LINQ operator to sort the attributes and using the First LINQ

operator to choose the one with minimum entropy). The result of this

computation is list of set identifiers and optimal attribute index for each.

This list can be used to attach a new layer of nodes to the decision tree.

The code presented computes a new level in the decision tree. To compute

a full tree, we would write:

var records = PartitionedTable.Get<Record>(datafile);

var tree = new Dictionary<int, int>();
for (int i = 0; i < maxTreeDepth; i++)

foreach (var result in DecisionTreeLayer(records, tree))
tree.Add(result.Key, result.Value);

Each iteration through the loop invokes a query returning the list of at-

tribute indices that are best for each of the leaves in the old tree that

we aimed to extend. In principle, we could unroll the loop to a single

DryadLINQ computation as we did with the k-means computation, using an

IQueryable<Pair<int,int>> as the data structure for our tree, and simply

feeding the result of one layer in as the tree for the next, but we do not do

this here. Instead, the tree variable is updated on the client computer, and

retransmitted to the cluster by DryadLINQ with each iteration.

The plan generated for the decision tree layer is shown in Figure 1.8. One

can view this plan as a sequence of map-reduce computations; in the re-

sulting plan each “reduce” stage is fused with the following “map” stage.

This plan also fundamentally benefits from DryadLINQ’s eager aggregation;

before any data exchange happens, each part is reduced to a collection of

16 Large-scale Machine Learning using DryadLINQ

records

a

b

c

d

Tree layer

12GB

500KB

12KB

3KB

16B

Figure 1.8 Dryad job execution plan generated for computing one layer of
the decision tree, assuming that the records data is split into three parti-
tions. The dotted lines show the amount of data that is crossing between
layers when computing the second level of the tree for a 12GB input set.

counts, no more than the |sets|× |labels|× |attributes|× |values|. The num-

ber of records plays no role in the size of the aggregates. As the tree becomes

deeper, the number of sets will increase, and there may come a point where

it is more efficient to reshuffle the records rather than their resulting ag-

gregates. However, the number of aggregates never exceeds the number of

quadruples, which never exceeds the number of attributes present in the

records.

Measurements

As for the k-means algorithm, the volume of data transferred across the net-

work by the decision tree induction code is largely independent on the vol-

ume of training data. Each group results in a number of aggregates bounded

by the structure of the problem, rather than the number or distribution of

records. We might see fewer aggregates if the records are concentrated prop-

erly (e.g., clustered by label, so that each part only produces half of the

possible aggregates), but the performance on random data is a good worst-

case evaluation.

We have used a 12GB input dataset for these measurements. Figure 1.8

shows the amount of data that crosses between computation stages; the

second stage reads only 0.5MB, due to the local aggregation performed by

1.3 Running LINQ on a cluster with DryadLINQ 17

DryadLINQ. The amount of data written by the last stage doubles for each

successive tree layer computation.

1.3.6 Example: Singular Value Decomposition

The Singular Value Decomposition (SVD) lies at the heart of several large

scale data analyses: principal components analysis, collaborative filtering,

image segmentation, and latent semantic indexing, among many others. The

SVD of a n×m matrix A is a decomposition A = UΣV T such that U and V

are both orthonormal (UTU = V TV = I) and Σ is a diagonal matrix with

non-negative entries.

Orthogonal Iteration is a common approach to computing the U and V

matrices, in which candidates U and V are repeatedly updated to AV and

ATU , respectively, followed by re-orthonormalization of their columns. In

fact, only one of the two iterates need to be retained (we will keep V) as the

other can be recomputed with one step. The process converges in the limit

to the true factors, and convergence after any fixed number of iterations can

be quite good; the error is exponentially small in the number of iterations,

where the base of the exponent depends on the conditioning of the matrix.

We will represent a matrix as a collection of Entry objects, commonly

reserved for sparse matrices but not overly inefficient for dense matrices.

struct Entry
{

int row, col
double val;

}

Based on this representation we can write several standard linear algebra

operations using LINQ operations:

// aggregates matrix entries with the same coordinates into a single value
IQueryable<Entry> Canonicalize(IQueryable<Entry> a)
{

return a.GroupBy(x => new { x.row, x.col }, x => x.val)
.Select(g => new Entry(g.Key.row, g.Key.col, g.Sum()));

}

// multiplies matrices. best if one is pre-partitioned by join key
IQueryable<Entry> Multiply(IQueryable<Entry> a, IQueryable<Entry> b)
{

return Canonicalize(a.Join(b,
x => x.col,
y => y.row,
(x, y) => new Entry(x.row, y.col, x.val * y.val)));

}

18 Large-scale Machine Learning using DryadLINQ

IQueryable<Entry> Add(IQueryable<Entry> a, IQueryable<Entry> b)
{

return Canonicalize(a.Concat(b));
}

IQueryable<Entry> Transpose(IQueryable<Entry> a)
{

return a.Select(x => new Entry(x.col, x.row, x.val));
}

Multiply produces a substantial amount of intermediate data, but DryadLINQ’s

eager aggregation significantly reduces this volume before the data are ex-

changed across the network.

These operations are sufficient for us to repeatedly compute ATAV , but

they do not let us orthonormalize the columns of V . However, the k × k

matrix V TV is quite small, and contains enough information to produce (via

Cholesky decomposition) a k × k matrix LV so that V LV is orthonormal.

We will use DryadLINQ to compute V TV and return this value to the client

computer where we compute LV and introduce it into the computation.

The orthogonal iteration algorithm then looks like:

// Cholesky decomposition done on the local computer (not shown)
PartitionedTable<Entry> Cholesky(IQueryable<Entry> vtv);

// materialize a and a^T partitioned on columns
var a = a.HashPartition(x => x.col).ToPartitionedTable("a");
var at = Transpose(a).HashPartition(x => x.col)

.ToPartitionedTable<Entry>("at");

// run 100 orthogonal iteration steps
for (int iteration=0; iteration < 100; iteration++)
{

v = Multiply(at, Multiply(a, v));

// Perform Cholesky decomposition once every five iterations
if (iteration % 5 == 0)
{

v = v.ToPartitionedTable("svd-" + iteration.ToString());
v = Multiply(v, Cholesky(Multiply(Transpose(v), v)));

}
}

Although it can also be written as a LINQ program, the body of the

Cholesky function is not shown; it is executed on the client computer. On

each loop iteration DryadLINQ creates a query that “wraps around” the

for loop, computing essentially AT ×A× (V ×LV). The orthonormalization

1.3 Running LINQ on a cluster with DryadLINQ 19

step is only required for numerical stability and is executed only once every

5 iterations. A new DryadLINQ job is created and dispatched to the cluster

once for every 5 iterations of the loop. Figure 1.9 shows the shape of the

DryadLINQ job execution plan generated for this program.

A

AT

CholeskyV

Repartition

Merge

Join

Sum, Repartition

Merge

Join

Sum, Repartition

Merge

Join

Sum

V x Cholesky

A x V

AT x A x V

35MB 96B

20GB

20GB

71MB

36MB

2GB

1GB

74MB

Plan in box is repeated 5 times

Figure 1.9 Partial Dryad job execution plan generated for the SVD compu-
tation, assuming that the matrices V and A are split into three partitions.
The portion of the plan in the dotted box is repeated 4 more times. The
dotted lines show the volume of data between computation stages for a
20GB A matrix.

Each loop iteration involves a Join of V with A, and with AT . We use the

HashPartition DryadLINQ-specific operator (an extension to basic LINQ)

to give a hint to the system to pre-partition A using its columns as keys; as a

consequence the join against the rows of V does not move any of A’s entries

across the network; only entries corresponding to V , usually much smaller,

are moved. Likewise, we keep a copy of AT partitioned by its columns.

Although keeping multiple copies of A may seem wasteful, the cost is paid

in terms of cheap disk storage rather than a scarce resource like memory.

Measurements

As we have noted, to extract optimum performance from the SVD algo-

rithm it is important to pre-partition the matrix data by row and column,

avoiding full data exchanges in each iteration. As such, matrix structure can

play a large role in the performance of the algorithm: matrices with block

20 Large-scale Machine Learning using DryadLINQ

structure, partitioned accordingly, result in substantially fewer aggregates

than matrices partitioned randomly. We evaluate our SVD algorithm on a

random sparse matrix; we used a matrix A of 20GB. The figure 1.9 shows

the volume of data that is crossing between stages; because A is rectangular,

multiplication with A or AT generates a different amount of intermediate

data. Without the local aggregation feature of DryadLINQ the result of a

Join would be 72GB, the actual data exchanged in our implementation is

2GB. The final multiplication result is even smaller, at 74MB.

1.4 Lessons Learned

We have applied DryadLINQ to a large variety of data mining and ma-

chine learning problems, including: decision trees, neural networks, linear

regression, expectation maximization, probabilistic latent semantic index-

ing, probabilistic index maps, graphical models, principal component analy-

sis. We summarize here some of the lessons we have learned in this process.

1.4.1 Strengths

The main strength of DryadLINQ is the very powerful high-level language

which integrates into a single source program both single-computer and

cluster-level execution. The seamless transition between the two environ-

ments allows one to build easily very complex applications using just Visual

Studio as a tool for development and debugging.

When necessary, interoperation with other languages (and in particular

with native code) is easily achieved using the standard .NET mechanisms

for invoking unmanaged code. We sometimes have to rely on native code

either for speed or for legacy reasons.

When writing very large programs the richness of the datatypes manipu-

lated by DryadLINQ and the strong typing of the language are particularly

helpful. The strong typing enables DryadLINQ to automatically generate

all the code for serializing the data moved between computers. For some

projects the amount of serialization code can dwarf the actual analysis.

Since the output of DryadLINQ is also LINQ code, but running on in-

dividual partitions, we have been able to make use of other existing LINQ

providers, such as PLINQ, which parallelizes the application across multiple

cores, using effectively all the computers in the cluster.

1.4 Lessons Learned 21

1.4.2 Weaknesses

While DryadLINQ is a great tool to program clusters, there is a price to pay

too for the convenience that it provides. We discuss here several weaknesses

that we have identified.

Efficiency: managed code (C#) is not always as efficient as native code

(C++); in particular, arithmetic and string operations can be up to twice

as fast in native code.

Debugging: debugging problems that occur when processing large data

sets is not always easy. DryadLINQ provides some good tools for debugging,

but the experience of debugging a cluster program remains more painful

than debugging a single-computer program.

Transparency: finally, while DryadLINQ does provide a high level lan-

guage to write cluster applications, one cannot just hide behind the language

abstraction and hope to get efficient code. In most cases one needs to have

some understanding of the operation of the compiler and particularly of the

job execution plans generated (this is why we have shown the job execution

plans for all our examples); this knowledge enables one to avoid egregious

mistakes and to choose the queries that exhibit the best performance.

1.4.3 A Real Application

As an industrial-strength application of DryadLINQ, we have implemented

(in collaboration with other researchers) several machine learning projects

for Microsoft’s Xbox Project Kinect. The goal of Kinect is to provide a

natural interface to the Xbox gaming console, by tracking the users’ bodies

and voices in real time; this transforms the user’s body itself into a game

controller. The visual input device for the Kinect system is a combination

video+depth camera (measuring the color and distance to each pixel in the

image), operating in real time at video frame rate. The output of the Kinect

system, available to the application developers, is the 3D position of the body

joints (a skeleton) of the players in the camera’s field of view. The mapping

between the input and output is computed by a collection of classifiers that

operate in real time, and using as little as possible of the Xbox CPU.

One of these classifiers (Shotton et al., 2011) was trained from a massive

dataset using supervised learning; the ground truth data used for the learn-

ing process is obtained from a motion capture device, similar to the ones

used at movie studios for digitizing the movements of actors. The training

is essentially performed on millions of pairs of video frames annotated with

the correct joint positions.

22 Large-scale Machine Learning using DryadLINQ

While the core algorithms are essentially simple, the actual implementa-

tion requires substantial tuning to perform efficiently, due to the immense

amount of training data. For example, we cannot afford to explicitly mate-

rialize all the features used for training; instead the features are represented

implicitly, and computed on demand. The data structures manipulated are

multi-dimensional and sparse; a substantial amount of code deals with ma-

nipulating efficiently the distributed sparse representations; moreover, as the

sparsity of the data structures changes dynamically during the training pro-

cess (some dimensions become progressively denser), the underlying data

representation is also changed dynamically.

The implementation of these algorithms has stretched the capabilities

of DryadLINQ and uncovered several performance limitations which have

in the meantime been fixed. For example, some of the objects represented

become very large (several gigabytes/object). There is a tension between

obtaining good utilization for all cores (using PLINQ) and having enough

RAM to keep all the required state in memory. This required us to change the

algorithms performing data buffering and to override PLINQ’s partitioning

decisions.

To implement this application we have made use of several DryadLINQ

features which we have not presented in this document, that allow us to

tune the partitioning of the data and to control the granularity of state and

the shape of the query plan. We make important use of .Net libraries, e.g.,

to parse the video/image input format. We have also implemented (with

very little effort) workflows of multiple jobs and checkpointing of workflows,

which allows us to restart the computation pipelines mid-way.

Overall, DryadLINQ has been an invaluable tool for the Kinect training

project; it allowed us to quickly prototype the algorithms and to execute

them at scale on an essentially unreliable medium (at this scale failures

become frequent enough to make a simple-minded solution completely im-

practical).

1.4.4 Availability

Dryad, DryadLINQ, and the machine learning code from this chapter is

available for download from the DryadLINQ project page: http://research.

microsoft.com/dryadlinq/. A commercial implementation of DryadLINQ

called LINQ to HPC is at the time of the writing available in Beta 2 at

http://msdn.microsoft.com/en-us/library/hh378101.aspx.

References

Dean, Jeff, and Ghemawat, Sanjay. 2004 (Dec.). MapReduce: Simplified Data Pro-
cessing on Large Clusters. Pages 137–150 of: Proceedings of the 6th Symposium
on Operating Systems Design and Implementation (OSDI).

Duffy, Joe. 2007 (January). A query language for data parallel programming. In:
Proceedings of the 2007 workshop on Declarative aspects of multicore program-
ming.

Google. 2010 (Accessed 27 August). Protocol Buffers. http://code.google.com/
apis/protocolbuffers/.

Isard, Michael, Budiu, Mihai, Yu, Yuan, Birrell, Andrew, and Fetterly, Dennis. 2007
(March). Dryad: Distributed Data-Parallel Programs from Sequential Building
Blocks. Pages 59–72 of: Proceedings of European Conference on Computer
Systems (EuroSys).

Microsoft. 2010 (Accessed 27 August). The LINQ Project. http://msdn.
microsoft.com/netframework/future/linq/.

Shotton, Jamie, Fitzgibbon, Andrew, Cook, Mat, Sharp, Toby, Finocchio, Mark,
Moore, Richard, Kipman, Alex, and Blake, Andrew. 2011 (June 21-23). Real-
Time Human Pose Recognition in Parts from a Single Depth Image. In: Com-
puter Vision and Pattern Recognition (CVPR).

Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú., Gunda, P. K., and Cur-
rey, J. 2008 (December 8-10). DryadLINQ: A System for General-Purpose
Distributed Data-Parallel Computing Using a High-Level Language. In: Pro-
ceedings of the 8th Symposium on Operating Systems Design and Implemen-
tation (OSDI).

Yu, Yuan, Gunda, Pradeep Kumar, and Isard, Michael. 2009. Distributed aggre-
gation for data-parallel computing: interfaces and implementations. Pages
247–260 of: SOSP ’09: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. New York, NY, USA: ACM.

