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Abstract

Incremental view maintenance (IVM) has been for a long time a cen-
tral problem in database theory [26]. Many solutions have been proposed
for restricted classes of database languages, such as the relational alge-
bra, or Datalog. These techniques do not naturally generalize to richer
languages. In this paper we give a general, heuristic-free solution to this
problem in 3 steps: (1) we describe a simple but expressive language
called DBSP for describing computations over data streams; (2) we give
a new mathematical definition of IVM and a general algorithm for solv-
ing IVM for arbitrary DBSP programs, and (3) we show how to model
many rich database query languages (including the full relational algebra,
queries over sets and multisets, arbitrarily nested relations, aggregation,
flatmap (unnest), monotonic and non-monotonic recursion, streaming ag-
gregation, and arbitrary compositions of all of these) using DBSP. As a
consequence, we obtain efficient incremental view maintenance algorithms
for queries over all these languages.

This document is work in progress. It contains a formal specification
of the DBSP language, proofs of the theoretical results, and the
specification of several query languages in DBSP. A shorter earlier
preprint is available at https://arxiv.org/abs/2203.16684.
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1 Introduction

Incremental view maintenance (IVM) is an important and well-studied problem
in databases. The IVM problem can be stated as follows: given a database DB
and a view V defined as a function of the database contents (described by a
query Q, i.e. V = Q(DB)), maintain the contents of V in response to changes
of the database, ideally more efficiently than by simply reevaluating Q(DB)
from scratch. The goal is to provide an algorithm that can evaluate Q over the
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changes ∆DB applied to the database, since in general the size of the changes
is small |∆DB| � |DB|.

This paper provides a new perspective by proposing a new definition of IVM
based on a streaming model of computation1. Whereas previous IVM solutions
are based on defining a notion of a (partial) derivative of Q with respect to its
inputs, our definition only requires computing derivatives of streams as functions
of time. Derivatives of streams are always well-defined (assuming that the data
computed on has a notion of difference that satisfies some simple mathematical
properties — i.e., it forms a commutative group. Fortunately, it has long been
known that relational databases can be modeled in such a way, e.g. [24, 36].)

DBSP has several attractive properties:

1. is is expressive. (a) It can be used to define precisely multiple con-
cepts: traditional queries, streaming computations, and incremental com-
putations. (b) We have been able to express in DBSP the full rela-
tional algebra, computations over sets and bags, nested relations, aggrega-
tion, flatmap, monotonic and nonmonotonic recursion, stratified negation,
while-relational programs, window queries, streaming queries, streaming
aggregation, and incremental versions of all of the above. In fact, we have
built a DBSP implementation of the complete SQL language (Section 15).

2. it is simple. DBSP is built entirely on elementary concepts such as func-
tions and algebraic groups.

3. mathematically precise. All the results in this paper have been formalized
and checked using the Lean proof assistant [17].

4. it is modular, in the following sense: (a) the incremental version of a
complex query can be reduced recursively to incrementalizing its compo-
nent subqueries. This gives a simple, syntactic, heuristic-free algorithm
(Algorithm 6.4) that converts an arbitrary DBSP query to its incremental
form. (b) Extending DBSP to support new primitive operators is easy,
and they immediately benefit from the rest of the theory of incremental-
ization. An important consequence of modularity is that the theory can
be efficiently implemented, as we briefly discuss in Section 15.

The core concept of DBSP is the stream, which is used to model changes
over time. We use SA to denote the type of infinite streams with values of type
A. If s ∈ SA is a stream, then s[t] ∈ A, t ∈ N is the tth element of s, also
referred to as the value of the stream at time t. A streaming computation is
a function that consumes one or more streams and produces another stream.
We show streaming computations with diagrams, also called “circuits”, where
boxes are computations and streams are arrows. The following diagram shows
a stream operator T : SA × SB → SC , consuming two input streams s0 and s1

and producing one output stream s:

1Our model is inspired by Digital Signal Processing [50], applied to databases, hence the
name DBSP.
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s0

s1
T s

We generally think of streams as sequences of “small” values, such as inser-
tions or deletions in a database. However, we also treat the whole database as
a stream of database snapshots. We model a database as a stream DB ∈ SSCH ,
where SCH is the database schema. Time is not wall-clock time, but counts
the transactions applied to the database. (Since transactions are linearizable,
they have a total order.) DB[t] is the snapshot of the database contents after t
transactions have been applied.

Database transactions also form a stream ∆DB, this time a stream of
changes, or deltas that are applied to the database. The values of this stream
are defined by (∆DB)[t] = DB[t] − DB[t − 1], where “−” stands for the dif-
ference between two databases, a notion that we will soon make more precise.
The ∆DB stream is produced from the DB stream by the stream differentia-
tion operator D : SA → SA; this operator produces as its output the stream of
changes from its input stream; we have thus D(DB) = ∆DB.

Conversely, the database snapshot at time t is the cumulative result of ap-
plying all transactions up to t: DB[t] =

∑
i≤t ∆DB[i]. The operation of adding

up all changes is the inverse of differentiation, and is another basic stream op-
erator, stream integration: I : SA → SA. The following diagram expresses the
relationship between the streams ∆DB and DB:

∆DB I DB D ∆DB

Suppose we have a query Q : SCH → SCH defining a view V . What is
a view in a streaming model? It is also a stream! For each snapshot of the
database stream we have a snapshot of the view: V [t] = Q(DB[t]). In general,
given an arbitrary function f : A → B, we define a streaming “version” of f ,
denoted by ↑f (read as “f lifted”), which applies f to every element of the input
stream independently. We can thus write V = (↑Q)(DB).

Armed with these basic definitions, we can now precisely define IVM. What
does it mean to maintain a view incrementally? We claim that an efficient
maintenance algorithm needs to compute the changes to the view given the
changes to the database. We thus define the IVM of a query Q by chaining the

above three definitions: ∆V
def
= D(V ) = D(↑Q(DB)) = D(↑Q(I (∆DB))). This

can be shown as the following diagram, which is the central definition of this
paper:

∆DB I ↑Q D ∆V
DB V

Given a query Q we define its incremental version as Q∆ def
= D ◦ ↑Q ◦ I . The

incremental version of a query is a streaming operator which computes directly
on changes and produces changes. The incremental version of a query is thus
always well-defined. The above definition shows one way to compute a query
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incrementally, but applying it naively will generally produce an inefficient ex-
ecution plan, since it will reconstruct the database at each step. In Section 5
we show how algebraic properties of the ·∆ transformation can be used to opti-
mize the implementation of Q∆. The first key property is that the composition
of queries can be incrementalized by composing the incremental versions of its
constituents, that is (Q1 ◦Q2)

∆
= Q1

∆ ◦Q2
∆. The second key property is that

essentially all primitive database operations have efficient incremental versions.
Armed with this general theory of incremental computation, in Section 4

we show how to model relational queries in DBSP. This immediately gives us
a general algorithm to compute the incremental version of any relational query.
These results were previously known, but they are cleanly modeled by DBSP.
Section 14 shows how recursive Datalog programs with stratified negation can
be implemented in DBSP, and Section 7.2 gives incremental streaming computa-
tions for recursive programs. For example, given an implementation of transitive
closure in the natural recursive way, our algorithm produces a program that ef-
ficiently maintains the transitive closure of a graph as the graph is changed by
adding and deleting edges.

We have formalized the entire DBSP theory in the Lean proof assistant ; our MIHAI: Need a URL for this

formalization includes machine-checked proofs of correctness for all the theorems
stated in this paper.

This paper makes the following contributions:

1. DBSP, a simple but expressive language for streaming computation.
DBSP gives an elegant formal foundation unifying the manipulation of
streaming and incremental computations.

2. An algorithm for incrementalizing any streaming computation expressed
in DBSP.

3. An illustration of how DBSP can be applied to various query classes,
such as relational algebra, nested relations, aggregations, flatmap, and
stratified-monotonic Datalog.

4. We offer the first fully mechanically-verified theory of IVM.

5. We provide a high-performance open-source implementation of DBSP as
a general-purpose streaming query engine in Rust.

The following tables summarize the mathematical notations used in the rest
of this paper.
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General notations
Z The ring of integer numbers
N The set of natural numbers 0, 1, 2, . . .
B The set of Boolean values
[n] The natural numbers between 0 and n− 1
id The identity function over some domain id : A→ A, id(x) = x

JQK Semantics of query (function) Q
〈a, b〉 The pair containing values a and b
fst(p) The operator that returns the first value of a pair p
snd(p) The operator that returns the second value of a pair p
a 7→ b The function that maps a to b and everything else to 0
λx.M An anonymous function with argument x and body M
fixx.f The (unique) solution (fixed point) of the equation f(x) = x
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Streams
SA The set of streams with elements from a group A; SA = {f | f :

N→ A}
SA Streams with elements from a group A that are 0 almost every-

where
s[t] The t-th element of a stream; s[t] = s(t)
↑f An operator applied to a function f : A→ B to produce a function

↑f : SA → SB operating pointwise
zpp(f) zpp(f) iff f(0) = 0 for f : A→ B for A,B groups
z−1 The stream delay operator z−1 : SA → SA, that outputs a 0

followed by the input stream
I The stream integration operator I : SA → SA
D The stream differentiation operator D : SA → SA
Q∆ The incremental version of an operator Q∆ = D ◦Q ◦ I
s|≤t

A stream that has the same prefix as s up to t, then it is all 0s
s|

<t
A stream that has the same prefix as s up to t − 1, then it is all
0s

∼= Symbol that indicates that two circuits compute the same function
δ0 A function that produces a stream from a scalar: scalar, followed

by zeros∫
A function that produces a scalar by adding all elements of a
stream

E E = I ◦ δo
X X =

∫
◦D

Z-sets
Z[A] Z-sets: finite functions from A→ Z
DB A database

∆DB A change to a database
|s| Size of Z-set s

isset A function isset : Z[A]→ B that determines whether its argument
is a set

distinct A function distinct : Z[A]→ Z[A] that always returns a set
ispositive A function ispositive : Z[A] → B that determines whether all

elements of a Z-set have positive weights
toszet Function converting a set to a Z-set
toset Function converting a Z-set into a set

2 Related work

2.1 Incremental View Maintenance

Incremental view maintenance [27, 25, 14, 26, 15] is a much studied problem
in databases. A survey of results for Datalog queries is present in [46]. The
standard approach is as follows: given a query Q, discover a “delta query”,
a“differential” version ∆Q that satisfies the equation: Q(d + ∆d) = Q(d) +
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∆Q(d,∆d), and which can be used to compute the change for a new input
reusing the previous output. DBToaster introduced recursive recursive IVM [6,
36], where the incrementalization process is repeated for the delta query.

Many custom algorithms were published for various classes of queries: e.g. [37]
handles positive nested relational calculus. DYN [29] and IDYN [30, 31] focus
on acyclic conjunctive queries. Instead of keeping the output view material-
ized they build data structures that allow efficiently querying the output views.
PAI maps [4] are specially designed for queries with correlated aggregations.
AJU [53] focuses on foreign-key joins. It is a matter of future work to evaluate
whether custom DBSP operators can match the efficiency of systems specialized
for narrow classes of queries.

DBSP is a bottom-up system, which always produces eagerly thechanges
to the output views. Instead of maintaining the output view entirely, DBSP
proposes generating deltas as the output of the computation (similar to the
kSQL [32] EMIT CHANGES queries). The idea that both inputs and outputs to an
IVM system are streams of changes seems trivial, but this is key to the symmetry
of our solution: both in our definition of IVM (5.1), and the fundamental reason
that the chain rule exists — the chain rule is the one that makes our structural
induction IVM algorithm possible.

IVM algorithms for Datalog-like languages frequently use counting based ap-
proaches [18, 47] that maintain the number of derivations of each output fact:
DRed [27] and its variants [13, 54, 52, 38, 42, 8], the backward-forward algo-
rithm and variants [47, 28, 46]. DBSP is more general than these approaches,
and our incrementalization algorithm handles arbitrary recursive queries and
generates more efficient plans for recursive queries in the presence of arbitrary
updates (especially deletions, where competing approaches may over-delete).
Interestingly, the Z-sets multiplicities in DBSP are related to the counting-
number-of-derivations approaches, but our use of the distinct operator shows
that precise counting is not necessary.

Picallo et al. [7] provide a general solution to IVM for rich languages. DBSP
requires a group structure on the values operated on; this assumption has two
major practical benefits: it simplifies the mathematics considerably (e.g., Pi-
callo uses monoid actions to model changes), and it provides a general, simple
algorithm (6.4) for incrementalizing arbitrary programs. The downside of DBSP
is that one has to find a suitable group structure (e.g., Z-sets for sets) to “em-
bed” the computation. Picallo’s notion of “derivative” is not unique: they need
creativity to choose the right derivative definition, we need creativity to find the
right group structure.

Finding a suitable group structure has proven easy for relations (both [36]
and [23] use Z-sets to uniformly model data and insertions/deletions), but it
is not obvious how to do it for other data types, such as sorted collections,
or tree-shaped collections (e.g., XML or JSON documents) [19]. An intriguing
question is “what other interesting group structures could this be applied to
besides Z-sets?” Papers such as [49] explore other possibilities, such as matrix
algebra, linear ML models, or conjunctive queries.

[12] implemented a verified IVM algorithm for a particular class of graph
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queries called Regular Datalog, with an implementation machine-checked in the
Coq proof assistant. Their focus is on a particular algorithm and the approach
does not consider other SQL operators, general recursion, or custom operators
(although it is modular in the sense that it works on any query by incremental-
izing it recursively). Furthermore, for all queries a deletion in the input change
stream requires running the non-incremental query to recover.

DBSP does not do anything special for triangle queries [35]. Are there better
algorithms for this case?

In Section 11 we have briefly mentioned that DBSP can easily model window
and stream database queries [9, 2]; it is an interesting question whether there
are CQL queries that cannot be expressed in DBSP (we conjecture that there
aren’t any).

DBSP is also related to Differential Dataflow (DD) [45, 48] and its theoret-
ical foundations [3] (and recently [44, 16]). DD’s computational model is more
powerful than DBSP, since it allows past values in a stream to be ”updated”.
In fact, DD is the only other framework which we are aware of which can incre-
mentalize recursive queries as efficiently as DBSP does. In contrast, our model
assumes that the inputs of a computation arrive in the time order while allowing
for nested time domains via the modular lifting transformer (↑). DBSP can ex-
press both incremental and non-incremental computations; in essence DBSP is
“deconstructing” DD into simple component building blocks. Most importantly,
DBSP comes with Algorithm 6.4, a syntax-directed translation that can convert
any expressible query into an incremental version — in DD users have to assem-
ble incremental queries manually using incremental operators. (materialize.com
offers a product that automates incrementalization, but only for SQL queries.
Differential Datalog [51] does it for a Datalog dialect.) Unlike DD, DBSP is a
modular theory, which easily accommodates the addition of new operators. In
particular, we have given full mechanical proofs of DBSP’s correctness.

2.2 Stream computation models

DBSP using non-nested streams is a simplified instance of a Kahn network [34].
Johnson [33] studies a very similar computational model without nested streams
and its expressiveness. The implementation of such streaming models of compu-
tation and their relationship to dataflow machines has been studied by Lee [40].
Lee [39] also introduced streams of streams and the ↑z−1 operator.

[20] surveys the connection between synchronous digital circuits and func-
tional programs. Our circuits are nothing but higher order functions computing
on streams (functions themselves). The paper’s main focus are circuits process-
ing numeric data, whereas, taking advantage of our circuits’ ability to compute
on arbitrary groups, we use circuits to implement incremental view maintenance
for relational databases.

Mamouras [43] gives a formal theory of stream computation.
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2.3 Connection to synchronous circuits

There is a vast literature on synchronous circuits, which are well-defined
models for hardware circuits e.g. [20]. These circuits also compute over infinite
streams of values, usually of Booleans SB. In a combinational circuit the
output values depend only on the current input values. These are pure lifted
streaming computations. A sequential circuit can have outputs that depend
on past input values. These are always causal circuits. Sequential synchronous
circuits use latches or flip-flops to store state; the latches are controlled by
a global clock signal. These correspond to the z−1 operator. In a well-formed
sequential circuit all back-edges must go through some latch — this corresponds
to our circuit construction rule that requires a delay element on each back-edge.

Languages such as Verilog or VHDL can be used to specify such circuits.
(However, both Verilog and VHDL are strictly more powerful, and can express
richer classes of circuits than just synchronous sequential circuits.)

There is a rich literature on synchronous circuits, and some of these results
are directly applicable to the circuits we discuss. Here are a few examples.

Retiming [41] is an optimization that “moves” around delay elements while
preserving the circuit semantics. Retiming is used traditionally to reduce the
clock cycle by minimizing the signal propagation delay between any pair of
latches. In our case it could be used for minimizing the amount of internal
circuit state.

In a synchronous circuit the state is entirely stored in the latches. Saving
and restoring the contents of the latches enables such circuits to take a snapshot
of their state and resume computation.2

Fault tolerance of synchronous circuits is provided by replicating the state
elements, to prevent accidental state changes caused by e.g., cosmic rays. We
can borrow this idea for building redundant distributed computations.

Pipelining digital circuits is an effective technique for increasing throughput
through parallelization, by inserting additional latches and allowing different
pipeline stages to compute concurrently on distinct stream values, at the expense
of increased latency between the inputs and the corresponding outputs.

Digital circuit latches depend on a special “reset” signal to initialize their
state to a pre-established value; this corresponds to the special 0 value in our
value domain.

Our nested streams are related to the notion of delta-cycles in the definition
of VHDL [10].

2In Boolean synchronous circuits this is achieved by connecting all latches into a scan chain
which can be read and written sequentially after stopping the circuit clock.
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Part I

Streaming and incremental
computations

3 Streams

3.1 Streams and stream operators

N is the set of natural numbers, B is the set of Booleans, and Z is the set of
integers. [n] = {0, 1, 2, . . . n− 1} is the set of natural numbers less than n. R is
the set of reals.

Definition 3.1 (stream). Given a set A, a stream of values from A, or an

A-stream, is a function N → A. We denote by SA
def
= {s | s : N → A} the set of

all A-streams.

When s ∈ SA and t ∈ N we write s[t] for the t-th element of the stream s
instead of the usual s(t) to distinguish it from other function applications.

We usually think of the index t ∈ N as (discrete) time and of s[t] ∈ A as the
value of the the stream s “at time” t.

For example, the stream of natural numbers given by id [t] = t is the sequence
of values [ 0 1 2 3 4 · · · ].

Definition 3.2 (stream operator). A (typed) stream operator with n inputs
is a function T : SA0 × · · · × SAn−1 → SB .

In general we will use “operator” for functions on streams, and “function”
for computations on “scalar” values.

DBSP is an extension of the simply-typed lambda calculus – we introduce
its elements gradually. However, we find it more readable to also use signal-
processing-like circuit diagrams to depict DBSP programs.

Stream operator composition (function composition) is shown as chained
circuits. The composition of a binary operator T : SA×SB → SA with the unary
operator S : SA → SB into the computation λs.T (T (s, S(s)), S(s)) : SA → SA
is given by the following circuit:

s

S T T

S

o

Arrows with a single start and multiple ends denote a stream that is reused
multiple times, e.g., s in the above diagram is used 3 times. Diagrams, however,
do obscure the ordering of the inputs of an operator; in the above examples we
have to indicate which ones are the first and respectively second inputs of T if
T is not commutative. Most of our binary operators are commutative.
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3.1.1 Stream operators by lifting

One way of building stream operators is by (pointwise) lifting functions oper-
ating on the stream values. For example, given a (scalar) f : A → B we can
define the stream operator ↑f : SA → SB by (↑f)(s) = f ◦ s, or, pointwise,

(↑f)(s)[t]
def
= f(s[t]).

This extends straightforwardly to functions of multiple arguments, e.g., given

T : A × B → C, we can define ↑T : SA × SB → SC as ((↑T )(s0, s1))[t]
def
=

T (s0[t], s1[t]).
We call such stream operators lifted. VAL: I hate to be picky about

this but we might want to
use a different notation for
set-theoretical pairing of ele-
ments, e.g., in functions of mul-
tiple arguments, and category-
theoretical pairing of func-
tions. I don’t think the latter
is captured properly below by
↑〈., .〉.

For example, applying the lifted operator λx.(2x) to the stream id : N→ N
gives as result a stream containing all even values:
(↑(λx.(2x)))(id) = [ 0 2 4 6 8 · · · ].

Proposition 3.3 (distributivity). Lifting distributes over function composition:
↑(f ◦ g) = (↑f) ◦ (↑g).

Proof. This is easily proved by using associativity of function composition:
∀s.(↑(f ◦ g))(s) = (f ◦ g) ◦ s = f ◦ (g ◦ s) = f ◦ (↑g)(s) = (↑f)((↑g)(s)) =
(↑f ◦ ↑g)(s).

We say that two circuits are equivalent if they compute the same input-
output function on streams. We use the symbol ∼= to indicate that two circuits
are equivalent. For example, Proposition 3.3 states the following circuit equiv-
alence:

s ↑g ↑f o ∼= s ↑(f ◦ g) o

Two (or more) streams can be combined (paired) into a single stream of
pairs (tuples) by lifting the scalar pairing operator 〈·, ·〉 : A → B → (A × B),
obtaining the stream pair operator: ↑〈·, ·〉 : SA × SB → SA×B , defined as
mapping a ∈ SA and b ∈ SB to 〈a, b〉 ∈ SA×B by pairing elements pointwise
↑〈a, b〉[t] = 〈a[t], b[t]〉 ∈ A×B.

For example, the stream 〈id , id〉 is the sequence of pairs
[ 〈0, 0〉 〈1, 1〉 〈2, 2〉 〈3, 3〉 〈4, 4〉 · · · ].

Let us also denote by fst : A × B → A the projection that obtains the first
element of a pair fst(〈a, b〉) = a, and by snd : A × B → B the projection that
obtains the second element of a pair. We obtain useful stream operators by
lifting ↑fst and ↑snd.

3.1.2 Basic stream operator equivalences

From type theory (or category theory) we recall the standard equalities that
pairing and projections satisfy: fst(〈s0, s1〉) = s0, snd(〈s0, s1〉) = s1, and
〈fst(p), snd(p)〉 = p. By lifting the functions on both left and right we ob-
tain some similar equivalences of circuits. In some of the circuits below
some inputs are not used.
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s0

s1

↑〈·, ·〉 ↑fst s0 ∼=
s0 s0

s1

s0

s1

↑〈·, ·〉 ↑snd s1 ∼=
s0

s1 s1

p

↑fst

↑snd

↑〈·, ·〉 p ∼= p p

Pairing and projections allow for switching between pairs of streams and
streams of pairs, whichever is more convenient. For example, instead of a binary
operator T : SA×SB → SC we can work with a unary operator Tu : SA×B → SC
where Tu(p) = T (↑fst(p), ↑snd(p)) and instead of a unary operator Q : SA×B →
SC we can work with a binary operator Qb : SA×SB → SC where Qb(s0, s1) =
Q(↑〈s0, s1〉).

s0

s1

Qb s def
=

s0

s1

↑〈·, ·〉 Q s

p Tu s def
= p

↑fst

↑snd

T s

Given two operators Q : SA → SB and R : SA → SC we define ↑〈Q,R〉 :
SA → SB×C by ↑〈Q,R〉(s) = ↑〈Q(s), R(s)〉. In terms of circuit diagrams:

s ↑〈Q,R〉 o ∼= s

Q

R

↑〈·, ·〉 o

We have standard equalities (from category theory) for this construct such
as ↑fst ◦ ↑〈Q,R〉 = Q, similarly for snd, and ↑〈↑fst ◦W, ↑snd ◦W 〉 = W . These
correspond to equivalences of circuits that follow from the simpler ones above.
For example, after substituting the definition of 〈Q,R〉 we have

s

R

S

↑〈·, ·〉 ↑fst o ∼= s R o

Another useful operator expression notation takes Q : SA → SB and R :
SD → SC and combines them into Q×R : SA×D → SB×C where (Q×R)(p) =
〈Q(↑fst(p)), R(↑snd(p))〉. This corresponds to the following circuit:
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p

↑fst Q

↑snd R

↑〈·, ·〉 o

We also have the following circuit equivalence:

s Q

o0

o1

∼= s

Q

Q

o0

o1

VAL: Should this one be here?
It is unrelated to products. Let
em email you a proposal for
organizing these equivalences
and definitions

Lifting functions on values and composing stream operators results in a
very simple, yet limited, programming language on streams. We next introduce
operators that “shift” streams in time. These will be instrumental for enriching
the language.

3.2 Streams over abelian groups

For the rest of the technical development we will require the set of values
(A,+, 0,−) for any stream SA to form a commutative group.

We denote by 0SA (or simply 0 when the type is clear) the stream that consist

of the special value 0A at each time moment: 0SA ∈ SA, ∀t ∈ N.0SA [t]
def
= 0A.

3.2.1 Delays and time-invariance

Definition 3.4 (Delay). The delay operator3 emits an output stream that is
the input stream delayed by one element: z−1

A : SA → SA defined by:

z−1
A (s)[t]

def
=

{
s[t− 1] when t ≥ 1

0A when t = 0

We often omit the type parameter A, and write just z−1. We denote by z−k

the composition of z−1 with itself k times (delay by k time units).

i z−1 o

For example, the delay of the id stream is z−1(id), containing the sequence
of values [ 0 0 1 2 3 · · · ].

The following definition applies to stream operators of any number of argu-
ments but to keep the notation simpler we formulate it only for binary operators.

Definition 3.5 (Time invariance). A stream operator T : SA0
× SA1

→ SB is
time-invariant if it commutes with the delay operator z−1, that is,
T (z−1(s0), z−1(s1)) = z−1(T (s0, s1)) for any s0 ∈ SA0

, s1 ∈ SA1
.

3The name z−1 comes form the DSP literature, and it is related to the z-transform in Sec-
tion A.
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In other words, T is time-invariant if and only if the following two circuits
are equivalent:

s0

s1

T z−1 o∼=

s0

s1

z−1

z−1

T o

It is straightforward to check that the composition of any number of time-
invariant operators of any number of arguments is time invariant. Similarly,
the delay operators z−k as well as the pairing and projection operators are
time-invariant. In this framework we only deal with time-invariant operators.

Definition 3.6. We say that a function between groups f : A → B has the
zero-preservation property iff f(0A) = 0B . We write zpp(f). This property
generalizes to functions with multiple inputs: e.g., g : A×B → C where A,B,C
are groups. zpp(g) iff g(0A, 0B) = 0C .

Proposition 3.7. A lifted operator ↑f is time-invariant iff zpp(f).

Notice that it is easy to construct operators that are not time-invariant.
Consider the “constant 1” function: c1 : N → N, defined by c1(x) = 1,∀x ∈ N.
The stream operator defined by ↑c1 : SN → SN produces a stream containing
only the constant value 1: c1(s)[t] = 1,∀s ∈ SN , t ∈ N. The stream operator
↑c1 is not time-invariant, since it does not have the zero preservation property.

3.3 Causal and strict operators

For notation simplicity we again give the next definition only for unary oper-
ators; it extends naturally to binary operators through the use of pairing as
shown above.

Definition 3.8 (Causality). A stream operator, S : SA → SB , is causal when
for any s, s′ ∈ SA, and all times t we have

(∀i ≤ t s[i] = s′[i]) implies S(s)[t] = S(s′)[t]

Note that all operators produced by lifting scalar functions are causal. z−1

is causal. All DBSP operators are causal.

Definition 3.9 (Cutting). Cutting the stream s ∈ SA at time t ∈ N produces
a stream

(s|≤t
)[i]

def
=

{
s[i] if i ≤ t
0A if i > t

For example, cutting the stream id at time 2 gives the stream id |≤2
composed

of the sequence [ 0 1 2 0 0 · · · ].
Note that s|≤t1

|≤t2
= s|≤min(t1,t2)

. It follows that s|≤t1
|≤t2

= s|≤t2
|≤t1

(cut-
ting is commutative) and s|≤t

|≤t
= s|≤t

, (cutting at time t is idempotent).
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Cutting, however, is not time-invariant. Cutting is not used as a DBSP opera-
tor, it is just a mathematical tool that we will use to reason about the behavior
of the circuits we build.

Lemma 3.10. The following are equivalent for a binary stream operator T

(i) T is causal

(ii) ∀s1, s2 and t we have T (s1, s2)|≤t
= T (s1|≤t

, s2|≤t
)|≤t

.

Using part (ii) it follows immediately that the composition of any number of
causal operators of any number of arguments is causal. Moreover, using also the
commutativity and idempotence of cutting, it follows that for any t the operator
λs.s|≤t

is itself causal.

Definition 3.11 (zero almost everywhere). We say that a stream s is zero
almost-everywhere if there exists a time t0 ∈ N s.t. s|≤t0

= s.

We denote the set of streams over A that are zero almost everywhere by SA.

Definition 3.12 (Strictness). A stream operator, F : SA → SB is strictly
causal (abbreviated strict) if for any s, s′ ∈ SA and all times t we have

(∀i < t.s[i] = s′[i]) implies F (s)[t] = F (s′)[t]

In particular, F (s)[0] = 0B is the same for all inputs s ∈ SA. Strict operators
are of course causal. Note that lifted stream operators, while causal, in general
are not strict.

It can be immediately checked that the operator z−1 (in fact, z−k for any
positive integer k) is strict. In this text z−1 is the only primitive strict operator
used.

Definition 3.13 (Strict cutting). Strictly cutting the stream s ∈ SA at time
t ∈ N produces the stream

(s|
<t

)[i]
def
=

{
s[i] if i < t

0A if i ≥ t

s|<0 is the stream 0SA that is 0A at all times. Note also that s|<t+1 = s|≤t
.

Analogously to Lemma 3.10 an operator F : SA → SB is strict iff for any s
and t we have

F (s)|≤t
= F (s|

<t
)|≤t

In particular, F (s)[0] = F (0SA)[0] and F (s)[t + 1] = F (s|≤t
)[t + 1]. Note the

different zeros in F (0SA)[0]: it features both the stream 0SA ∈ SA, consisting of
the group element 0A at each time moment, and the time moment 0.

The next proposition shows the importance of strict operators.

Proposition 3.14. For any strict operator F : SA → SA the equation α =
F (α) has a unique solution α ∈ SA. In other words, every strict operator has
a unique fixed point, which we denote by fixα.F (α).
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Proof. Define the solution (the fixed point) by recurrence:

α[0] = F (α)[0] = F (0SA)[0]

α[t+ 1] = F (α)[t+ 1] = F (α|≤t
)[t+ 1]

The second equality defines α[t+1] in terms of α[0], . . . , α[t]. Uniqueness follows
by strong induction.

We will apply the previous proposition to operators obtained by composing
strict and causal ones.

Lemma 3.15. Let k ≥ 2. If F is strict and the k-ary T operator is causal, then
for any fixed s0, . . . , sk−2 the operator λα.T (s0, . . . , sk−2, F (α)) is strict.

Proof. We show the case k = 2. This operator is described by the following
diagram with a “feedback loop”:

s T α

F

T (s, F (α))|≤t
= T (s|≤t

, F (α)|≤t
)|≤t

= T (s|≤t
, F (α|

<t
)|≤t

)|≤t

= T (s, F (α|
<t

))|≤t

Corollary 3.16. For strict F we have

(fixα.F (α))|≤t
= fixα.(F (α)|≤t

)

Proof. Since cutting itself is a causal operator, it follows from Lemma 3.15 that
λα.(F (α)|≤t

) is strict so Proposition 3.14 applies and fixα.(F (α)|≤t
) is well-

defined.
If we let α be the solution of α = F (α) then, by uniqueness, it suffices to

show that β = α|≤t
satisfies the equation β = F (β)|≤t

. Indeed, since F is in
particular causal

α|≤t
= F (α)|≤t

= F (α|≤t
)|≤t

Corollary 3.17. Let k ≥ 1. If F : SA → SA is strict and (k + 1)-ary T is
causal then the k-ary operator Q(s0, . . . , sk−1) = fixα.T (s0, . . . , sk−1, F (α)) is
well-defined and causal. If, moreover, F and T are time-invariant then so is Q.
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Proof. We show the case k = 1. The well-definedness of Q follows by apply-
ing, for each s, Proposition 3.14 to the operator λα.T (s, F (α)) which is strict
by Lemma 3.15. For future reference it might be useful to state the defining
recurrence for a stream α produced by this operator, that is, α = Q(s):

α[0] = T (s, F (0SA))[0]

α[t+ 1] = T (s, F (α|≤t
))[t+ 1]

To prove that Q is causal we could use this recurrence and induction. Instead
we use the causality of T and the idempotence of cutting in conjunction with
Corollary 3.16 as follows:

Q(s)|≤t
= (fixα.T (s, F (α)))|≤t

= fixα.(T (s, F (α))|≤t
) (Corollary 3.16)

= fixα.(T (s|≤t
, F (α)|≤t

)|≤t
) (Causality of T )

= fixα.(T (s|≤t
|≤t
, F (α)|≤t

)|≤t
) (Idempotence of cutting)

= fixα.(T (s|≤t
, F (α))|≤t

) (Causality of T )

= (fixα.T (s|≤t
, F (α)))|≤t

(Corollary 3.16)

= Q(s|≤t
)|≤t

For time-invariance we observe that if α = T (s, F (α)) then z−1(α) =
z−1(T (s, F (α))) = T (z−1(s), z−1(F (α)) = T (z−1(s), F (z−1(α))). It follows
that β = z−1(α) satisfies the equation β = T (z−1(s), F (β)) so, by uniqueness
of the fixed point Q(z−1(s)) = z−1(Q(s)).

Ostensibly this covers a form of straightforward recursion but how about
mutual recursion? For instance, assuming T1, T2 are causal and F1, F2 are
strict we wish to claim that the following is well defined: Q1(s1, s2) = α1 and
Q2(s1, s2) = α2 where:

α1 = T1(s1, F1(α2)) and

α2 = T2(s2, F2(α1))

Here is the corresponding diagram:

s1

s2

T1

T2

α1

α2

F2

F1

In section 3.1.2 we defined constructions on pairs of streams/streams of pairs.
In particular, for binary T1 : SA1

×SB1
→ SC1

and binary T2 : SA2
×SB2

→ SC2

let binary T1 × T2 : SA1×A2
× SB1×B2

→ SC1×C2
VAL: For binary operators we
should have defined × this way
in section 3.1.2 ... Also, in the
def of T1 × T2 note that I did
not put a lift in front of the
stream pairing operator on the
RHS.
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[T1 × T2](p, q) = 〈T1(↑fst ◦ p, ↑fst ◦ q), T2(↑snd ◦ p, ↑snd ◦ q)〉

In addition, we use F1 × F2 : SC1×C2 → SB1×B2 as defined in section 3.1.2. Let
also swap : C1 × C2 → C2 × C1 be the operator that swaps the components of
a pairs (obtained by pairing the second projection with the third.

Proposition 3.18. If T1 and T2 are causal then T1 ◦ T2 is causal. If F1 and F2

are strict then (F1 × F2) ◦ ↑swap is strict.

The circuit above is equivalent to the following (when composed with pro-
jections of outputs and pairing of inputs:

s T1 × T2 α

(F1 × F2) ◦ ↑swap

In other words, we can apply Corollary 3.17 to the causal operator T1 × T2

and the strict operator F1 × F2 and obtain Q1 and Q2 from

fixα.[T1 × T2](〈s1, s2〉, [F1 × F2](swap(α)))

by further projecting, where α is a variable of type pair of streams and α swaps
the two components. VAL: We should state this a

some kind of corollary to the
corollary.

MIHAI: This becomes com-
plicated for n-way mutual re-
cursion, you have a quadratic
number of edges. Maybe it’s
simpler to assume that all of
them use all of the alphas, and
the projection to a subset is
part of T if needed.

3.4 Streams as an abelian group

Remember that we require the elements of a stream to come from an Abelian
group: (A,+, 0,−). This structure also lifts to streams:

Proposition 3.19. (SA,+, 0SA ,−) (with the operations lifted pointwise in
time) is also an abelian group. Moreover, lifting a group homomorphism pro-
duces a stream operator that is itself a group homomorphism. In addition,
when A and B are abelian groups there is a standard abelian group structure
on A×B, with the zero 0A×B the pair 〈0A, 0B〉.

Definition 3.20 (linear). If A and B are abelian groups, we call a function
f : A→ B linear if it is a group homomorphism, that is, f(a+ b) = f(a)+f(b)
(and therefore f(0A) = 0B and f(−a) = −f(a)); thus zpp(f).

We use the abbreviation LTI for a stream operator that is linear and time-
invariant.

Lifting a linear function f : A → B produces a stream operator ↑f that
is causal and LTI. It follows that stream addition and negation are causal and
LTI. z−1 is LTI, (and so is z−k for all k).

Definition 3.21 (multilinear, bilinear). We define multilinear (in particular,
bilinear) functions as functions (between groups) of multiple arguments that
are linear separately in each argument (that is, if we fix all but one argument,
the resulting function is linear in that argument. In other words, the function
distributes over addition): e.g., for g : A0 ×A1 → B, ∀a, b ∈ A0, c, d ∈ A1.g(a+
b, c) = g(a, c) + g(b, c), and g(a, c+ d) = g(a, c) + g(c, d).
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Multiplication over Z is a bilinear function. For a bilinear function g we
have zpp(g).

This definition extends to stream operators. Lifting any bilinear function
g : A×B → C produces a bilinear stream operator ↑g. An example bi-linear op-
erator over SZ is the lifted integer multiplication: T : SZ×SZ → SZ, T (a, b)[t] =
a[t] · b[t].

The composition of multilinear operators with linear operators is multilinear
(since homomorphisms compose). Since linear and bilinear functions have the
zero-preservation property, lifted linear and bilinear functions operators are all
time-invariant.

Proposition 3.22. The composition of a bilinear operator followed by a linear
operator is a bilinear operator.

Proof. Consider T : SA × SB → SC a bilinear operator, and S : SC → SC ,
a linear operator. Let us compute S(T (a + b, c)) = S(T (a, c) + T (b, c)) =
S(T (a, c)) + S(T (b, c)). Thus S ◦ T is bilinear.

Lifting a multilinear operator A1 × · · · × An → B produces a multilinear,
time-invariant stream operator. Although combining pairs (tuples) of streams
into stream of pairs (tuples) can be useful we must note a distinction (well
understood in algebra): we have seen that we can use instead of a binary stream
operator T : SA × SB → SC a unary version that acts on streams of pairs
Tu : SA×B → SC where Tu〈a, b〉 = T (a, b). However, in contrast to causality,
there is, in general, no relation between the linearity.

In traditional signal processing most operators are LTI but in our develop-
ment we will use some important non-linear ones.

The “feedback-loop” operators defined by recurrence in Corollary 3.17, e.g.,
λs.fixα.T (s, F (α)) are, in general, not (multi)linear. However, multilinearity VAL: Counterexample

even for bilinear S and
λs1.λs2.fixα.S(s1, s2 +
z−1(α))? Possibly S is join
NOT followed by distinct?

holds in important particular cases, as shown in the following proposition:

Proposition 3.23. Let S be a unary causal, LTI operator. Then, the operator
Q(s) = fixα.S(s+ z−1(α)) is well-defined and LTI.

MIHAI: Notice that this is a
very nice kind of recursion, a
tail-recursion.s + S α

z−1

Proof. Since S and the addition operator are causal and z−1 is strict, Proposi-
tion 3.14 applies, for each s, to the operator λα.S(s + z−1(α)) which is strict
by Lemma 3.15. Thus Q is well-defined.

Fix streams s0 and s1. Let α0 be the unique solution of α0 = S(s0+z−1(α0))
and α1 be the unique solution of α1 = S(s1 + z−1(α1)). Then α = α0 + α1 is
the unique solution of α = Q(s0 + s1 + z−1(α)). This is justified by adding the
equations and using the linearity of S and the linearity of z−1.
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Proposition 3.24. If T is binary causal, G is unary causal, and F is unary
strict then:

fixα.G(T (s, F (α))) = G(fixβ.T (s, F (G(β))))

In terms of diagrams:
s T G o

F

∼=
s T G o

GF

Proof. For the second fixpoint to exist we need to show that F ◦ G is strict.
Once we do that, by uniqueness of solutions, it remains to show that if β is a
solution to β = T (s, F (G(β)) then α = G(β) is a solution to α = G(T (s, F (α))
which is immediate by applying G to the first equation. So let’s prove that F ◦G
is strict. For t > 0 we have

F (G(s))|≤t
= F (G(s)|<t)|≤t

(F strict)

= F (G(s)|≤t−1
)|≤t

(t ≥ 1)

= F (G(s|≤t−1
))|≤t

(G causal)

= F (G(s|<t))|≤t

For t = 0 just observe that F (G(s))[0] is the same for any G(s) therefore for
any s. Note that if G is not causal then F ◦G is not strict and the fixed point
may not exist.

3.5 Differentiation and Integration

Definition 3.25 (Differentiation). The differentiation operator DSA : SA →
SA is defined by:

DSA(s)
def
= s− z−1(s)

We generally omit the type, and write just D when the type can be inferred
from the context.

The value of D(s) (at time t) is the difference between the current (time t)
value of s and the previous (time t− 1) value of s.

As an example, applying D to the stream id gives a result a stream D(id)
containing the values [ 0 1 1 1 1 · · · ].

s + D(s)

z−1 −

Proposition 3.26. The differentiation operator D is causal and LTI.

Proof. Follow from definition using the properties of subtraction and delay.

The integration operator “reconstitutes” a stream from its changes:
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Definition 3.27 (Integration). The integration operator ISA : SA → SA is

defined by ISA(s)
def
= λs.fixα.(s+ z−1(α)).

We also generally omit the type, and write just I . This is the construction from
Proposition 3.23 using the identity function for S.

s + I (s)

z−1

As an example, applying I to the id stream gives as result a stream I (id)
composed of the values [ 0 1 3 6 10 · · · ].

Proposition 3.28. I (s) is the discrete (indefinite) integral applied to the
stream s: I (s)[t] =

∑
i≤t s[i].

Proof. The recurrence from Corollary 3.17 specializes to

α[0] = s[0]

α[t+ 1] = α[t] + s[t+ 1]

and it’s straightforward to check that α[t] =
∑

i≤t s[i] satisfies it.

Proposition 3.29 (Properties of I ). The integration operator I is causal and
LTI.

Proof. By Proposition 3.28 these properties follow from Corollary 3.17 and
Proposition 3.23. They also be checked directly using the definition by summa-
tion.

Theorem 3.30 (Inversion). The integration and differentiation operators are
inverse to each other. Equivalently, for any streams α and s we have α = I (s)
iff D(α) = s.

Proof. This can be shown directly from the definitions, for example

D(I (s))[t] = (I (s)− z−1(I (s)))[t] definition of D

=
∑
k≤t

s[k]− z−1(
∑
k≤t

s[k])[t] Property 3.29

=
∑
k≤t

s[k]−
∑

k≤t−1

s[k] definition of z−1

= s[t]

(and similarly we can show that I (D(s′))[t] = s′[t]).
Alternatively, the equivalent form of the theorem follows from Proposi-

tion 3.28 by observing that D(α) = s iff α = s + z−1(α) which is the equation
on streams that defines α = I (s).
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So we have the following circuit equivalence:
s I D o ∼= s o ∼= s D I o

Since I and D are inverse to each other they are both bijections on streams.
If we define addition of pairs as adding the pair elements pointwise, we also

have the following identities: I (〈s, t〉) = 〈I (s), I (t)〉 and D(〈s, t〉) = 〈D(s),D(t)〉.

Observation It is a standard algebraic fact that the inverse of a homomor-
phism is also a homomorphism. Thus, I is linear iff D is linear. Another immedi-
ate consequence of this theorem is that I is time-invariant iff D is time-invariant.
Moreover I is causal iff D is causal. Therefore by the Inversion Theorem we
could have stated and proved only one of Proposition 3.29 or Proposition 3.26.

Observation In digital signal processing, I is a IIR, an infinite-impulse re-
sponse filter: given a cut stream it can produce an unbounded stream. D is a
FIR, a finite-impulse response filter: from a cut stream it always produces a cut
stream.

4 Relational algebra in DBSP

4.0.1 Generalizing box-and-arrow diagrams

From now on our circuits will mix computations on scalars and streams. We
will use the same graphical representation for functions that compute on scalars:
boxes with input and output arrows. The values on the the connecting arrows
will be scalars instead of streams; otherwise the interpretation of boxes as func-
tion application is unchanged.

When connecting boxes the types of the arrows must match. E.g., the output
of a box producing a stream cannot be connected to the input of a box consuming
a scalar.

Results in Section 3 apply to streams of arbitrary group values. In this
section we turn our attention to using these results in the context of relational
databases.

However, we face a technical problem: the I and D operators were defined on
abelian groups, and relational databases in general are not abelian groups, since
they operate on sets. Fortunately, there is a well-known tool in the database
literature which converts set operations into group operations by using Z-sets
(also called z-relations [24]) instead of sets.

We start by defining the Z-sets group, and then we explain how relational
queries are converted into DBSP circuits over Z-sets.

4.1 Z-sets as an abelian group

Given a set A we define Z-sets4 over A as functions with finite support from
A to Z (i.e., which are 0 almost everywhere). These are functions f : A → Z

4Also called Z-relations elsewhere [23].
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where f(x) 6= 0 for at most a finite number of values x ∈ A. We also write Z[A]
for the type of Z-sets with elements from A. The values in Z[A] can also be
thought as being key-value maps with keys in A and values in Z, justifying the
array indexing notation.

Since Z is an abelian group, Z[A] is also an abelian group. This group
(Z[A],+Z[A], 0Z[A],−ZA) has addition and subtraction defined pointwise:

(f +Z[A] g)(x) = f(x) + g(x).∀x ∈ A.

The 0 element of Z[A] is the function 0Z[A] defined by 0Z[A](x) = 0.∀x ∈ A. (In
fact, since Z is a ring, Z[A] is also ring, endowed with a multiplication operation,
also defined pointwise.)

A particular Z-set m ∈ Z[A] can be denoted by enumerating the inputs that
map to non-zero values and their multiplicities: m = {x1 7→ w1, . . . , xn 7→ wn}.
We call wi ∈ Z the multiplicity (or weight) of xi ∈ A. Multiplicities can be
negative. We write that x ∈ m for x ∈ A, iff m[x] 6= 0.

For example, let’s consider a concrete Z-set R ∈ Z[string], defined by
R = {joe 7→ 1, anne 7→ −1}. R has two elements in its domain, joe with
a multiplicity of 1 (so R[joe] = 1), and anne with a multiplicity of −1. We say
joe ∈ R and anne ∈ R.

Given a Z-set m ∈ Z[A] and a value v ∈ A, we overload the array index
notation m[v] to denote the multiplicity of the element v in m. Thus we write
R[anne] = −1. When c ∈ Z, and v ∈ A we also write c · v for the singleton
Z-set {v 7→ c}. In other words, 3 · frank = {frank 7→ 3}. We extend scalar

multiplication to operate on Z-sets: for c ∈ Z,m ∈ Z[A], c · m def
=
∑

x∈m(c ·
m[x]) · x. We then have 2 · R = {joe 7→ 2, anne 7→ −2}: multiplying each row
weight by 2.

We define the size of a Z-set as the size of its support set, and we use the

modulus symbol to represent the size: |m| def
=
∑

x∈m 1. So |R| = 2.

4.2 Sets, bags, and Z-sets

Z-sets generalize sets and bags. Given a set with elements from A, it can be
represented as a Z-set Z[A] by associating a weight of 1 with each set element.
The function tozset : 2A → Z[A], defined as tozset(s) =

∑
x∈s 1 · x, converts

a set to a Z-set by associating a multiplicity of 1 with each set element. Thus
tozset({joe, anne}) = {joe 7→ 1, anne 7→ 1}.

Definition 4.1. We say that a Z-set represents a set if the multiplicity of every
element is one. We define a function to check this property isset : Z[A] → B,
given by:

isset(m)
def
=

{
true if m[x] = 1,∀x ∈ m
false otherwise

For our example isset(R) = false, since R[anne] = −1. isset(tozset(m)) =
true for any set m ∈ 2A.
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Definition 4.2. We say that a Z-set is positive (or a bag) if the multiplicity of
every element is positive. We define a function to check this property ispositive :
Z[A]→ B, given by

ispositive(m)
def
=

{
true if m[x] ≥ 0,∀x ∈ A
false otherwise

For our example ispositive(R) = false, since R[anne] = −1, but isset(m) ⇒
ispositive(m).∀m ∈ Z[A].

We also write m ≥ 0 when m is positive. For positive m,n we write m ≥ n
for m,n ∈ Z[A] iff m− n ≥ 0. The relation ≥ is a partial order.

Definition 4.3. The function distinct : Z[A] → Z[A] projects a Z-set into an
underlying set (but the result is still a Z-set). The definition is ∀x ∈ A

distinct(m)[x]
def
=

{
1 if m[x] > 0
0 otherwise

distinct(R) = {joe 7→ 1}.
distinct “removes” elements with negative multiplicities. zpp(distinct).
Circuits derived from relational program will only operate with positive Z-

sets; non-positive values will be only used to represent changes to Z-sets (a
change with negative weights will remove elements from a Z-set).

Proposition 4.4. distinct is idempotent: distinct = distinct ◦ distinct .

Proposition 4.5. For any m ∈ Z[A] we have: isset(distinct(m)) and
ispositive(distinct(m)).

We call a function f : Z[I]→ Z[O] positive if ∀x ∈ Z[I], x ≥ 0Z[I] ⇒ f(x) ≥
0Z[0]. We extend the notation used for Z-sets for functions as well: ispositive(f).

Correctness of the DBSP implementations The function toset : Z[A]→
2A, defined as toset(m) = ∪x∈distinct(m){x}, converts a Z-set into a set.

A relational query f that transforms a set V into a set U will be implemented
by a DBSP computation f ′ on Z-sets. The correctness of the implementation
requires that the following diagram commutes:

V

V Z

U

UZ

f

tozset
f ′

toset

Remark: We can generalize the notion of Z-sets to functions m : A → G
for a ring G other than Z. The properties we need from the ring structure are
the following: the ring must be a commutative group (needed for defining I , D ,
and z−1), the multiplication operation must distribute over addition (needed to
define Cartesian products), and there must be a notion of positive values, needed
to define the distinct function. Rings such as Q or R would work perfectly.
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4.3 Streams over Z-sets

Since all the results from Section 3 are true for streams over an arbitrary abelian
group, they extend to streams where the elements are Z-sets. In the rest of this
text we only consider streams of the form SZ[A], for some element type A.

An example of a stream of Z-sets is
s = [ 0 R −1 ·R 2 ·R −2 ·R · · · ]. We have s[2] = −R = {joe 7→
−1, anne 7→ 1}.

Definition 4.6. A stream s ∈ SZ[A] is positive if every value of the stream is
positive: s[t] ≥ 0.∀t ∈ N.

Definition 4.7. A stream s ∈ SZ[A] is monotone if s[t] ≥ s[t− 1],∀t ∈ N.

Lemma 4.8. Given a positive stream s ∈ SZ[A] the stream I (s) is monotone.

Proof. Let us compute I (s)[t+1]−I (s)[t] =
∑

i≤t+1 s[i]−
∑

i≤t s[i] = s[t+1] ≥ 0,
by commutativity and positivity of s.

Lemma 4.9. Given a monotone stream s ∈ SZ[A], the elements of the stream
D(s) are positive.

Proof. By the definition of monotonicity s[t + 1] ≥ s[t]. By definition of D we
have D(s)[t+ 1] = s[t+ 1]− s[t] ≥ 0.

4.4 Implementing the relational algebra

The fact that the relational algebra can be implemented by computations on
Z-sets has been shown before, e.g. [24]. The translation of the core relational
operators is summarized in Table 1 and discussed below.

The translation is fairly straightforward, but many operators require the
application of a distinct to produce sets. The correctness of this implementation
is predicated on the global circuit inputs being sets as well.

4.4.1 Query composition

A composite query is translated by compiling each sub-query separately into a
circuit and composing the respective circuits.

For example, consider the following SQL query:

SELECT ... FROM (SELECT ... FROM ...)

given circuits CO implementing the outer query and CI implementing the inner
query, the translation of the composite query is:

I CI CO O

We have ispositive(CI)∧ ispositive(C0)⇒ ispositive(CO ◦CI) and zpp(CI)∧
zpp(CO)⇒ zpp(CO ◦ CI).
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Operation SQL example DBSP circuit

Composition
SELECT DISTINCT ... FROM

(SELECT ... FROM ...) I CI CO O

Union

(SELECT * FROM I1)

UNION

(SELECT * FROM I2)

I1

I2

+ distinct O

Projection
SELECT DISTINCT I.c

FROM I I π distinct O

Filtering
SELECT * FROM I

WHERE p(I.c) I σP distinct O

Selection
SELECT DISTINCT f(I.c, ...)

FROM I I map(f) distinct O

Cartesian
product

SELECT I1.*, I2.*

FROM I1, I2

I1

I2

× O

Join

SELECT I1.*, I2.*

FROM I1 JOIN I2

ON I1.c1 = I2.c2

I1

I2

./ O

Intersection

(SELECT * FROM I1)

INTERSECT

(SELECT * FROM I2)

I1

I2

./ O

Difference

SELECT * FROM I1

EXCEPT

SELECT * FROM I2

I1

I2 −
+ distinct O

Table 1: Implementation of SQL relational set operators in DBSP. Each query
assumes that inputs I, I1, I2, are sets and it produces output sets.
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4.4.2 Set union

Consider the following SQL query:

(SELECT * FROM I1) UNION (SELECT * FROM I2)

The following circuit implements the union program:

I1

I2

+ distinct O

Given Z-sets a, b ∈ Z[I] s.t. isset(a) and isset(b), their set union can be
computed as: ∪ : Z[I]× Z[I]→ Z[I],

a ∪ b def
= distinct(a+Z[I] b).

The distinct application is necessary to provide the set semantics.

4.4.3 Projection

Consider a query such as:

SELECT I.c FROM I

We can assume without loss of generality that table I has two columns,
and that a single column is preserved in the projection. Hence the type of I is
Z[A0×A1] while the result has type is Z[A0]. In terms of Z-sets, the projection
of a Z-set i on A0 is defined as:

π(i)[y] =
∑

x∈i,x|0=y

i[x]

where x|0 is first component of the tuple x. In other words, the multiplicity
of a tuple in the result is the sum of the multiplicities of all input tuples that
project to it.

The circuit for a projection query is:

I π distinct O

The distinct is necessary to convert the result to a set.
π is linear; ispositive(π), zpp(π).

4.4.4 Selection

We generalize the SQL selection operator to allow it to apply an arbitrary
function to each row of the selected set. Given a function f : A→ B, the math-
ematical map operator “lifts” the function f to operate on Z-sets: map(f) :
Z[A]→ Z[B]. A map operator appears in SQL due to the use of expressions in
the SELECT clause, as in the following example:
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SELECT f(I.c) FROM I

The circuit implementation of this query is:

I map(f) distinct O

For any function f we have the following properties: map(f) is linear,
ispositive(map(f)), andzpp(map(f)).

4.4.5 Filtering

Filtering occurs in SQL through a WHERE clause, as in the following example:

SELECT * FROM I WHERE p(I.c)

Let us assume that we are filtering with a predicate P : A → B. We define
the following function σP : Z[A]→ Z[A] as:

σP (m)[t] =

{
m[t] · t if P (t)
0 otherwise

The circuit for filtering with a predicate P is:

I σP O

For any predicate P we have isset(i)⇒ isset(σP (i)) and ispositive(σP ). Thus
a distinct is not needed. σP is linear and zpp(σP ).

4.4.6 Cartesian products

Consider this SQL query performing a Cartesian product between sets I1 and
I2:

SELECT I1.*, I2.* FROM I1 , I2

We first define a product operation on Z-sets. For a ∈ Z[A] and b ∈ Z[B]
we define a× b ∈ Z[A×B] by

(a× b)((x, y))
def
= a[x]× b[y].∀x ∈ a, y ∈ b.

The weight of a pair in the result is the product of the weights of the elements
in the sources. The circuit for the query is:

I1

I2

× O

isset(x) ∧ isset(y)⇒ isset(x× y). × is bilinear, ispositive(×), zpp(×).
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4.4.7 Joins

As is well-known, joins can be modeled as Cartesian products followed by filter-
ing. Since a join is a composition of a bilinear and a linear operator, it is also
a bilinear operator. ispositive(./), zpp(./).

In practice joins are very important computationally, and they are imple-
mented by a built-in scalar function on Z-sets:

(a ./ b)((x, y))
def
= a[x]× b[y] if x|c1 = y|c2.

I1

I2

./ O

4.4.8 Set intersection

Set intersection is a special case of join, where both relations have the same
schema. It follows that set intersection is bilinear, and has the zero-preservation
property.

4.4.9 Set difference

Consider the following query:

SELECT * FROM I1 EXCEPT SELECT * FROM I2

We define the set difference on Z-sets as follows: \ : Z[I] × Z[I] → Z[I],
where

i1 \ i2 = distinct(i1 − i2).

Note that we have ∀i1, i2, ispositive(i1 \ i2) due to the distinct operator. The
circuit computing the above query is:

I1

I2 −
+ distinct O

5 Incremental computation

In this section we formally define incremental computations over streams and
analyze their properties.

Definition 5.1. Given a unary stream operator Q : SA → SB we define the

incremental version of Q as Q∆ def
= D ◦Q ◦ I . Q∆ has the same “type” as Q:

Q∆ : SA → SB . For an operator with multiple inputs we define the incremental
version by applying I to each input independently: e.g., if T : SA × SB → SC
then T∆ : SA × SB → SC and T∆(a, b)

def
= D(T (I (a), I (b))).
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The following diagram illustrates the intuition behind this definition:

∆s I Q D ∆o
s o

If Q(s) = o is a computation, then Q∆ performs the “same” computation
as Q, but between streams of changes ∆s and ∆o. This is the diagram from
the introduction, substituting ∆s for the transaction stream T , and o for the
stream of view versions V .

Notice that our definition of incremental computation is meaningful only for
streaming computations; this is in contrast to classic definitions, e.g. [26] which
consider only one change. Generalizing the definition to operate on streams
gives us additional power, especially when operating with recursive queries.

The following proposition is one of our central results.

Proposition 5.2. (Properties of the incremental version):
For computations of appropriate types, the following hold:

inversion: Q 7→ Q∆ is bijective; its inverse is Q 7→ I ◦Q ◦D .

invariance: +∆ = +, (z−1)
∆

= z−1,−∆ = −, I ∆ = I ,D∆ = D

push/pull: Q ◦ I = I ◦Q∆; D ◦Q = Q∆ ◦D

chain: (Q1 ◦Q2)
∆

= Q1
∆ ◦ Q2

∆ (This generalizes to operators with multiple
inputs.)

add: (Q1 +Q2)
∆

= Q1
∆ +Q2

∆

cycle: (λs.fixα.T (s, z−1(α)))
∆

= λs.fixα.T∆(s, z−1(α))

Proof. The inversion and push-pull properties follow straightforwardly from the
fact that I and D are inverses of each other.

For proving invariance we have +∆(a, b)
def
= D(I (a) + I (b)) = a + b, due

to linearity of I . −∆(a) = D(−I (a)) = D(0 − I (a)) = D(I (0) − I (a)) =
D(I (0− a)) = −a, also due to linearity of I .

The chain rule follows from push-pull. Indeed,

I ◦Q1
∆ ◦Q2

∆ = Q1 ◦ I ◦Q2
∆ = Q1 ◦Q2 ◦ I

I.e., we have the following sequence of equivalent circuits:

i I Q1 Q2 D o ∼=

i I Q1 D I Q2 D o ∼=

i Q1
∆ Q2

∆ o

Here is a version of the chain rule with a binary operator:
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a I

b I

Q1

Q2

T D o ∼=

a I Q1 D I

b I Q2 D I

T D o ∼=

a

b

Q1
∆

Q2
∆

T∆ o

The add rule follows from push/pull and the linearity of I (or D). Indeed,

I ◦ (Q1
∆ +Q2

∆) = I ◦Q1
∆ + I ◦Q2

∆ = Q1 ◦ I +Q2 ◦ I = (Q1 +Q2) ◦ I

I.e., the following diagrams are equivalent:

i I

Q1

Q2

+ D o ∼=

i

I

I

Q1

Q2

D

D

+ o ∼=

i

Q1
∆

Q2
∆

+ o

The cycle rule is most interesting. First, observe that if T is causal then so
is T∆ thus both sides of the equality are well-defined. Next, we can use again
push/pull to show the equality if we can check that

I ◦ (λs.fixα.T∆(s, z−1(α)) = (λs.fixα.T (s, z−1(α)) ◦ I

that is, for any s,

I (fixα.T∆(s, z−1(α)) = fixα.T (I (s), z−1(α))

This follows from the following lemma.

Lemma 5.3. If the parameters a and b are related by b = D(a) (equivalently
a = I (b)) then the unique solutions of the fixed point equations

α = T (a, z−1(α)) and β = T∆(b, z−1(β))

are related by α = I (β) (equivalently β = D(α)).
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Proof. (Of Lemma 5.3) Let β be the unique solution of β = T∆(D(a), z−1(β)).
We verify that α = I (β) satisfies the equation α = T (a, z−1(α)). Indeed, using
the fact that I and D are inverses as well as the time-invariance of I we have

I (β) = I (T∆(D(a), z−1(β)))

= I (D(T (I (D(a)), I (z−1(β))))

= T (a, I (z−1(β))

= T (a, z−1(I (β))

I.e., starting from this diagram we apply a sequence of term-rewriting se-
mantics-preserving transformations:

s I T D o

z−1

∼=

s I

D I

T D o

Iz−1

∼=

s T∆ o

z−1

If we specialize the above formula for the case T (a, b) = Q(a+ b) (for some
time-invariant operator Q), by us the linearity of I we get that:

i I + Q D o

z−1

∼=
i + Q∆ o

z−1

Theorem 5.4 (Linear). For any LTI operator Q we have Q∆ = Q.

Proof. By the push/pull rule from Proposition 5.2 it suffices to show that Q
commutes with differentiation:

D(Q(s)) = Q(s)− z−1(Q(s)) by definition of D

= Q(s)−Q(z−1(s)) by time-invariance of Q

= Q(s− z−1(s)) by linearity of Q

= Q(D(s)) by definition of D .
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As we have shown, the incremental version of a linear unary operator equals
the operator itself. However, this is not true, in general, for multilinear opera-
tors. Nonetheless, there is a useful relationship between the incremental version
of a multilinear operator and the operator itself. We illustrate with bilinear
operators.

Theorem 5.5 (Bilinear). For any bilinear time-invariant operator × we have

(a× b)∆
= a× b + I (z−1(a))× b + a× I (z−1(b)).

By rewriting this statement using ∆a for the stream of changes to a we get
the familiar formula for incremental joins: ∆(a × b) = ∆a × ∆b + a × (∆b) +
(∆a)× b.

In other words, the following three diagrams are equivalent:

a I

b I

× D o ∼=

a

b

I

×

I

z−1

z−1

×

×

+ o ∼=

a

b

I

I z−1

×

×

+ o

Proof.

(a× b)∆
= D(I (a)× I (b)) def of ·∆

= (I (a)× I (b)) − z−1(I (a)× I (b)) def of D

= I (a)× I (b) − z−1(I (a))× z−1(I (b)) × time inv.

= (a+ z−1(I (a)))× (b+ z−1(I (b))) − z−1(I (a))× z−1(I (b)) I fixpoint equation

= a× b+ z−1(I (a))× b+ a× z−1(I (b)) + z−1(I (a))× z−1(I (b))

− z−1(I (a))× z−1(I (b)) bilinearity

= a× b + z−1(I (a))× b + a× z−1(I (b)) cancel

= a× b + I (z−1(a))× b + a× I (z−1(b)) I time inv.

= (a+ I (z−1(a)))× b + a× I (z−1(b)) commutativity

= I (a)× b + a× I (z−1(b)) def of I

6 Incremental relational queries

We start by giving a few rules that can be used to optimize relational DBSP
circuits. Later we show how DBSP relational circuits can be converted to in-
cremental versions.
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6.1 Optimizing distinct

All standard algebraic properties of the relational operators can be used to
optimize circuits. In addition, a few optimizations are related to the distinct
operator, which is not linear, and thus expensive to incrementalize:

Proposition 6.1. Let Q be one of the following Z-sets operators: filtering
σ, join ./, or Cartesian product ×. Then we have ∀i ∈ Z[I], ispositive(i) ⇒
Q(distinct(i)) = distinct(Q(i)).

i distinct Q o ∼= i Q distinct o

This rule allows us to delay the application of distinct .

Proposition 6.2. Let Q be one of the following Z-sets operators: filtering
σ, projection π, selection (map(f)), addition +, join ./, or Cartesian prod-
uct ×. Then we have ∀i ∈ Z[I], ispositive(i) ⇒ distinct(Q(distinct(i))) =
distinct(Q(i)).

This is Proposition 6.13 in [23].

i distinct Q distinct o ∼=

i Q distinct o

These properties allow us to “consolidate” distinct operators by performing
one distinct at the end of a chain of computations.

Proposition 6.3. The following circuit implements (↑distinct)
∆

:

d (↑distinct)
∆ o ∼=

d I z−1

↑H o

i

where H : Z[A]× Z[A]→ Z[A] is defined as:

H(i, d)[x]
def
=


−1 if i[x] > 0 and (i+ d)[x] ≤ 0

1 if i[x] ≤ 0 and (i+ d)[x] > 0

0 otherwise

The function H detects whether the multiplicity of an element in the input
set i is changing from negative to positive or vice-versa.
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6.1.1 Anti-joins

I1

I2

./ −

+ distinct O

This can be optimized as follows:

I1

I2 distinct −

./

+ O

6.2 Parallelization

DBSP is rich enough to express operators such as the Volcano exchange opera-
tor [21], which can be used to parallelize DBSP circuits. The following circuit
shows a parallel implementation of a join operator.

s1

s2

./ o ∼=

s1

σ1

σ2

s2

σ1

σ2

./

./

+ o

Here is an example of an exchange operator which repartitions the data in a
collection from two partitions to three partitions, where σi for i ∈ [3] are disjoint
selection functions that partition the space of tuples.

s1

s2

σ2

σ1

σ3

σ2

σ1

σ3

+

+

+

o1

o2

o3

6.3 Incremental relational queries

Let us consider a relational query Q defining a view. To create a circuit that
maintains incrementally the view defined by Q we apply the following mechan-
ical steps:

Algorithm 6.4 (incremental view maintenance).
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1. Translate Q into a circuit using the rules in Table 1.

2. Apply optimization rules, including distinct consolidation.

3. Lift the whole circuit, by applying Proposition 3.3, converting it to a
circuit operating on streams.

4. Incrementalize the whole circuit “surrounding” it with I and D .

5. Apply the chain rule and other properties of the ·∆ operator from Propo-
sition 5.2 to optimize the incremental implementation.

It is known that a query can be implemented by multiple plans, with vary-
ing data-dependent costs. The input provided to this algorithm is a standard
relational query plan, and this algorithm produces an incremental plan that
is “similar” to the input plan5. Step (2) generates an equivalent circuit, with
possibly fewer distinct operators (the result is deterministic no matter the order
of elimination). Step (3) yields a circuit that consumes a stream of complete
database snapshots and outputs a stream of complete view snapshots. Step (4)
yields a circuit that consumes a stream of changes to the database and out-
puts a stream of view changes; however, the internal operation of the circuit is
non-incremental, as it rebuilds the complete database using integration opera-
tors. Step (5) incrementalizes the circuit by rewriting all operators to compute
directly on changes.

6.3.1 Example

In this section we apply the incremental view maintenance algorithm to a con-
crete query. Let us consider the following query:

CREATE VIEW v AS

SELECT DISTINCT t1.x, t2.y FROM (

SELECT t1.x, t1.id

FROM t

WHERE t.a > 2

) t1

JOIN (

SELECT t2.id , t2.y

FROM r

WHERE r.s > 5

) t2 ON t1.id = t2.id

Step 1: First we create a DBSP circuit to represent this query using the
translation rules from Table 1:

5Query planners generally use cost-based heuristics to optimize plans, but IVM planning in
general does not have this luxury, since the plan must be generated before the data has been
fed to the database. Nevertheless, standard query optimization techniques, perhaps based on
historical statistics, can be applied to the query plan before generating the incremental plan.
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t1 σa>2 distinct πx,id distinct

t2 σs>5 distinct πid,y distinct

./id=id πx,y distinct V

Step 2: we apply the distinct optimization rules; first the rule from 6.2 gives
us the following equivalent circuit:

t1 σa>2 πx,id distinct

t2 σs>5 πid,y distinct

./id=id πx,y distinct V

Applying the rule from 6.1 we get:

t1 σa>2 πx,id

t2 σs>5 πid,y

./id=id distinct πx,y distinct V

And applying again 6.2 we get:

t1 σa>2 πx,id

t2 σs>5 πid,y

./id=id πx,y distinct V

Step 3: we lift the circuit using distributivity of composition over lifting;
we obtain a circuit that computes over streams, i.e., for each new input pair of
relations t1 and t2 it will produce an output view V:

t1 ↑σa>2 ↑πx,id

t2 ↑σs>5 ↑πid,y

↑ ./id=id ↑πx,y ↑distinct V

Step 4: incrementalize circuit, obtaining a circuit that computes over changes;
this circuit receives changes to relations t1 and t2 and for each such change it
produces the corresponding change in the output view V:

∆t1 I ↑σa>2 ↑πx,id

∆t2 I ↑σs>5 ↑πid,y

↑ ./id=id ↑πx,y ↑distinct D ∆V

Step 5: apply the chain rule to rewrite the circuit as a composition of incre-
mental operators;

∆t1 (↑σa>2)
∆ (↑πx,id)

∆

∆t2 (↑σs>5)
∆ (↑πid,y)

∆

(↑ ./id=id)
∆ (↑πx,y)

∆
(↑distinct)

∆ ∆V

Use the linearity of σ and π to simplify this circuit:
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∆t1 ↑σa>2 ↑πx,id

∆t2 ↑σs>5 ↑πid,y

(↑ ./id=id)
∆ ↑πx,y (↑distinct)

∆ ∆V

Finally, replace the incremental join using the formula for bilinear operators
(Theorem 5.5), and the incremental distinct (Proposition 6.3), obtaining the
circuit below:

∆t1 ↑σa>2 ↑πx,id

∆t2 ↑σs>5 ↑πid,y

I

↑ ./id=id

I

z−1

z−1

↑ ./id=id

↑ ./id=id

+ ↑πx,y I z−1

↑H ∆V

Notice that the resulting circuit contains three integration operations: two
from the join, and one from the distinct . It also contains three join operators.
However, the work performed by each operator for each new input is propor-
tional to the size of change, as we argue in the following section.

6.4 Complexity of incremental circuits

Incremental circuits are efficient. We evaluate the cost of a circuit while pro-
cessing the t-th input change from two points of view: the work performed, and
the total memory used. Even if Q is a pure function, Q∆ is actually a streaming
system, with internal state. This state is stored entirely in the delay operators
z−1, some of which appear in I and D operators. The result produced by Q∆

on the t-th input depends in general not only on the new t-th input, but also
on all prior inputs it has received.

We argue that each operator in the incremental version of a circuit is efficient
in terms of work and space. We make the standard IVM assumption that the in-
put changes of each operator are small6: |∆DB[t]| � |DB[t]| = |(I (∆DB))[t]|.

An unoptimized incremental operator Q∆ = D ◦ Q ◦ I evaluates query Q
on the whole database DB, the integral of the input stream: DB = I (∆DB);
hence its time complexity is the same as that of the non-incremental evaluation
of Q. In addition, each of the I and D operators uses O(|DB[t]|) memory.

Step (5) of the incrementalization algorithm applies the optimizations de-
scribed in Section 5; these reduce the time complexity of each operator to be
a function of O(|∆DB[t]|. For example, Theorem 5.4, allows evaluating S∆,
where S is a linear operator, in time O(|∆DB[t]|). The I operator can also be
evaluated in O(|∆DB[t]|) time, because all values that appear in the output of
I (∆DB)[t] must be present in current input change ∆DB[t]. Similarly, while the

distinct operator is not linear, (↑distinct)
∆

can also be evaluated in O(|∆DB[t]|)
according to Proposition 6.3. Bilinear operators, including join, can be evalu-

6In the worst case this may not hold for all operators in a composite query plan because
outputs of operators can be large even if inputs are small.
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ated in time O(|DB[t]| × |∆DB[t]|), which is a factor of |DB[t]/∆DB[t]| better
than full re-evaluation.

The space complexity of linear operators is 0 (zero), since they store no data

persistently. The space complexity of operators such as (↑distinct)
∆

, (↑ ./)∆
,

I , and D is O(|DB[t]|) (the first two because they contain one or more integrals
I in their expansion).

7 Nested streams

7.1 Creating and destroying streams

We introduce two new stream operators that are instrumental in expressing re-
cursive query evaluation. These operators allow us to build circuits implement-
ing looping constructs, which are used to iterate computations until a fixed-point
is reached.

7.1.1 Stream introduction

Definition 7.1 (Dirac delta). The delta function (named from the Dirac delta
function) δ0 : A → SA produces a stream from a scalar value. The output
stream is produced as follows from the input scalar:

δ0(v)[t]
def
=

{
v if t = 0
0A otherwise

Here is a diagram showing a δ0 operator; note that the input is a scalar
value, while the output is a stream:

i δ0 o

For example, δ0(5) is the stream [ 5 0 0 0 0 · · · ].

7.1.2 Stream elimination

Recall that SA was defined in Definition 3.11 to be the set of A-streams over a
group A that are zero almost everywhere.

Definition 7.2 (indefinite integral). We define a function
∫

: SA → A as∫
(s)

def
=
∑

t≥0 s[t].∫
is closely related to I ; if I is the indefinite integral,

∫
is the definite

integral on the interval 0 −∞. Unlike I
∫

produces a scalar value, the “last”
distinct value that would appear in the stream produced by I . For example∫

(id |≤4
) = 0 + 1 + 2 + 3 = 6, because I (id |≤4

) = [ 0 1 3 6 6 · · · ].
An alternative definition for

∫
for all streams SA would extend the set A

with an “infinite”: A
def
= A ∪ {>}, and define

∫
s

def
= > for streams that are not

zero a.e., s ∈ SA \ SA.
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Here is a diagrams showing the
∫

operator; note that the result it produces
is a scalar, and not a stream:

i
∫

o

δ0 is the left inverse of
∫

, i.e., the following equation holds:
∫
◦ δ0 = idA.

7.1.3 The E and X operators

The composition I ◦ δ0 is frequently used, so we will give it a name, denoting it

by E : A→ SA, E
def
= I ◦ δ0.

E def
= δ0 I

Notice that the output of the E operator is a constant infinite stream, con-
sisting the scalar value at the input. E(5) = [ 5 5 5 5 5 · · · ].

Similarly, we denote by X : SA → A the combination X
def
=
∫
◦D .

X def
= D

∫
Proposition 7.3. For a monotone stream o ∈ SA we have X(o) = limn→∞ o[n],
if the limit exists.

Proof. X(o|≤n
) = (

∫
◦D)(o|≤n

) = o[0]+(o[1]−o[0])+. . .+(o[n]−o[n−1]) = o(n).
The result follows by taking limits on both sides.

MIHAI: This looks almost
right, but it is not.Clearly, E is the left-inverse of X.

Proposition 7.4. δ0,
∫

, E, and X are LTI.

Proof. The proof is easy using simple algebraic manipulation of the definitions
of these operators.

7.1.4 Time domains

So far we had the tacit assumption that “time” is common for all streams in a
program. For example, when we add two streams, we assume that they use the
same “clock” for the time dimension. However, the δ0 operator creates a streams
with a “new”, independent time dimension. In Section 12 we will define some
well-formed circuit construction rules that will ensure that such time domains
are always “insulated”, by requiring each diagram that starts with a δ0 operator
to end with a corresponding

∫
operator:

i δ0 Q
∫

o

Proposition 7.5. IfQ is time-invariant, the circuit above has the zero-preservation
property: zpp(

∫
◦ Q ◦ δo).

Proof. This follows from the fact that all three operators preserve zeros, and
thus so does their composition.
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7.2 Streams of streams

7.2.1 Defining nested streams

Since all streams we work with are defined over abelian groups and streams
themselves form an abelian group, as pointed in Section 3.4, it follows that
we can naturally define streams of streams. SSA = N → (N → A). This
construction can be iterated, but our applications do not require more than two-
level nesting. Box-and-arrow diagrams can be used equally to depict functions
computing on nested streams; in this case an arrow represent a stream where
each value is another stream.

Equivalently, a nested stream in SSA is a value in N×N→ A, i.e., a “matrix”
with an infinite number of rows, where each row is a stream. For example, we
can depict the nested stream i ∈ SSN defined by i[t0][t1] = t0 + 2t1 as:

i =


[ 0 1 2 3 · · · ]
[ 2 3 4 5 · · · ]
[ 4 5 6 7 · · · ]
[ 6 7 8 9 · · · ]

...


(t0 is the column index, and t1 is the row index).

7.2.2 Lifting stream operators

We have originally defined lifting (Section 3.1.1) for scalar functions. We can
generalize lifting to apply to stream operators as well. Consider a stream

operator S : SA → SB . We define ↑S : SSA → SSB as: (↑S(s))[t0][t1]
def
=

S(s[t0])[t1],∀t0, t1 ∈ N. Alternatively, we can write (↑S)(s) = S ◦ s.
In particular, a scalar function f : A→ B can be can lifted twice to produce

an operator between streams of streams: ↑↑f : SSA → SSB .
Lifting twice a scalar function computes on elements of the matrix pointwise:

(↑↑(x 7→ x mod 2))(i) =


[ 0 1 0 1 · · · ]
[ 0 1 0 1 · · · ]
[ 0 1 0 1 · · · ]
[ 0 1 0 1 · · · ]

...


z−1 delays the rows of the matrix:

z−1(i) =


[ 0 0 0 0 · · · ]
[ 0 1 2 3 · · · ]
[ 2 3 4 5 · · · ]
[ 4 5 6 7 · · · ]

...


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while its lifted counterpart delays each column of the matrix:

(↑z−1)(i) =


[ 0 0 1 2 · · · ]
[ 0 2 3 4 · · · ]
[ 0 4 5 6 · · · ]
[ 0 6 7 8 · · · ]

...


We can also apply both operators, and they commute:

(↑z−1)(z−1(i)) = z−1((↑z−1)(i)) =


[ 0 0 0 0 · · · ]
[ 0 0 1 2 · · · ]
[ 0 2 3 4 · · · ]
[ 0 4 5 6 · · · ]

...


Similarly, we can apply D to nested streams D : SSA → SSA , computing on

rows of the matrix:

D(i) =


[ 0 1 2 3 · · · ]
[ 2 2 2 2 · · · ]
[ 2 2 2 2 · · · ]
[ 2 2 2 2 · · · ]

...


while ↑D : SSA → SSA computes on the columns:

(↑D)(i) =


[ 0 1 1 1 · · · ]
[ 2 1 1 1 · · · ]
[ 4 1 1 1 · · · ]
[ 6 1 1 1 · · · ]

...


Similarly, we can apply both differentiation operators in sequence:

(D(↑D))(i) =


[ 0 1 1 1 · · · ]
[ 2 0 0 0 · · · ]
[ 2 0 0 0 · · · ]
[ 2 0 0 0 · · · ]

...


7.2.3 Strict operators on nested streams

In order to show that operators defined using feedback are well-defined on nested
streams we need to extend the notion of strict operators from Section 3.3.

We define a partial order over timestamps: (i0, i1) ≤ (t0, t1) iff i0 ≤ t0
and i1 ≤ t1. We extend the definition of strictness for operators over nested
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streams: a stream operator F : SSA → SSB is strict if for any s, s′ ∈ SSA and
all times t, i ∈ N × N we have ∀i < t, s[i] = s′[i] implies F (s)[t] = F (s′)[t].
Proposition 3.14 holds for this notion of strictness, i.e., the fixed point operator
fixα.F (α) is well defined for a strict operator F . MIHAI: Should write down

this proof.

Proposition 7.6. The operator ↑z−1 : SSA → SSA is strict.

The I operator on SSA is well-defined: it operates on rows of the matrix,
treating each row as a single value:

I (i) =


[ 0 1 2 3 · · · ]
[ 2 4 6 8 · · · ]
[ 6 9 12 15 · · · ]
[ 12 16 20 24 · · · ]

...


With this extended notion of strictness we have that the lifted integration

operator is also well-defined: ↑I : SSA → SSA . This operator integrates each
column of the stream matrix:

(↑I )(i) =


[ 0 1 3 6 · · · ]
[ 2 5 9 14 · · · ]
[ 4 9 15 22 · · · ]
[ 6 13 21 30 · · · ]

...


Notice the following commutativity properties for integration and differen-

tiation on nested streams: I ◦ (↑I ) = (↑I ) ◦ I and D ◦ (↑D) = (↑D) ◦D .

7.2.4 Lifted cycles

Proposition 7.7 (Lifting cycles). For a binary, causal T we have:

↑(λs.fixα.T (s, z−1(α))) = λs.fixα.(↑T )(s, (↑z−1)(α))

i.e., lifting a circuit containing a “cycle” can be accomplished by lifting all
operators independently.

Proof. Consider a stream of streams a = [a0, a1, a2, · · · ] ∈ SSA (where each
ai ∈ SA). The statement to prove becomes:

↑(λs.fixα.T (s, z−1(α)))(a) = fixα.(↑T )(a, (↑z−1)(α))

This follows if we show that the value defined as:

β = ↑(λs.fixα.T (s, z−1(α)))(a)

satisfies
β = (↑T )(a, (↑z−1)(β))
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Now, expanding the definition of lifting a function:

↑(λs.fixα.T (s, z−1(α)))(a)
def
= ↑(λs.fixα.T (x, z−1(α)))([a0, a1, · · · ])
def
= [fixα.T (a0, z

−1(α)),fixα.T (a1, z
−1(α)), · · · ]

= [α0, α1, α2, · · · ]

where, ∀i.αi is the unique solution of the equation αi = T (ai, z
−1(αi)). Finally,

for β = [α0, α1, · · · ] we have

(↑T )([a0, a1, . . .], (↑z−1)(β)) = [T (a0, z
−1(α0)), T (a1, z

−1(α1)), . . .]

which finishes the proof.

Proposition 7.7 gives us the tool to lift whole circuits. For example, we have:

i ↑I o ∼=
i + o

↑z−1

As another example, consider the following circuit T : A→ B that represents
a scalar function:

i δ0 + ↑Q
∫

o

z−1

Since this circuit represents a scalar function, it can be lifted like any other
scalar function to create a stream computation7:

i ↑δ0 + ↑↑Q ↑
∫

o

↑z−1

7.3 Fixed-point computations

Theorem 7.8. Given a scalar operator Q : A → A, the output stream o
computed by the following diagram (using the lifted version of Q) is given by
∀t ∈ N.o[t] = Qt+1(i), where k is the composition of Q with itself k times.

i δ0 + ↑Q o

z−1

7Notice that + is not shown lifted in this circuit, since there is in fact a + operator for any
type, and we have that ↑(+A) = +SA
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Proof. Let us compute o[t]. We have that o[0] = Q(δ0(i)[0] + 0) = Q(i). o[1] =
Q(o[0] + δ0(i)[1]) = Q(Q(i) + 0) = Q2(i). We can prove by induction over t that
o[t] = Qt+1(i).

Observation: in this circuit the “plus” operator behaves as an if, selecting
between the base case and the inductive case in a recursive definition. This is
because the left input contains a single non-zero element (i), in the first position,
while the bottom input starts with a 0.

8 Recursive queries in DBSP

Recursive queries are very useful in a many applications. For example, many
graph algorithms (such as graph reachability or transitive closure) are naturally
expressed using recursive queries.

We illustrate the implementation of recursive queries in DBSP for stratified
Datalog.

8.1 Implementing recursive queries

For warm-up we start with a single recursive queries, and then we discuss the
case of mutually recursive queries.

8.1.1 Recursive rules

In Datalog a recursive rule appears when a relation that appears in the head of
a rule is also used in a positive term in the rule’s body. (Stratification disallows
the use of the same relation negated in the rule’s body). The Datalog semantics
of recursive rules is to compute a fixedpoint.

Consider a Datalog program of the form:

O(v) :- C(v). // base case

O(v) :- ..., O(x), I(z), ... . // recursive case

Note that relation O is recursively defined. Let us assume wlog that the O

relation depends on two other relations (i.e., in the rule bodies defining O the
two other relations appear) : a “base case” relation C (which appears in a non-
recursive rule), and a relation I which appears in the recursive rule, but does
not itself depend on O.

To implement the computation of O as a circuit we perform the following
algorithm:

Algorithm 8.1 (recursive queries).
1. Implement the non-recursive relational query R as described in Section 4

and Table 1; this produces an acyclic circuit whose inputs and outputs are
a Z-sets:

I

O

R O
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2. Lift this circuit to operate on streams:

I

O

↑R O

We construct ↑R by lifting each operator of the circuit individually according
to Proposition 3.3.

3. Build a cycle, connecting the output to the corresponding input via a delay:

I ↑R O

z−1

o

4. “Bracket” the circuit in I and D nodes, and then in δ0 and
∫

:

I δ0 I ↑R D
∫

O
o

z−1

This circuit as drawn is not a well-formed circuit. It can, however, be VAL: Why not well-formed?
As far as I can see its semantics
follows from Corollary 3.17.

MIHAI: The WFC rules re-
quire any circuit bracketed by
δ0 –

∫
to have no other input or

output edges. It also requires
back-edges to go through a
plus only. It is more strict than
the stream computation rules.

modified into an equivalent well-formed circuit by adding two constant zero
value streams:

I

C

0

E

E

E +

↑R

+ z−1 ↑λx.0

+ X O

z−1

Theorem 8.2. If isset(I) and isset(C), the output of the circuit above is the
relation O as defined by the Datalog semantics of recursive relations as a function
of the input relations I and C.

Proof. The proof is by structural induction on the structure of the circuit. As
a basis for induction we assume that the circuit R correctly implements the
semantics of the recursive rule body when treating O as an independent input.
We need to prove that the output of circuit encompassing R produces the correct
value of the O relation, as defined by the recursive Datalog equation.

Let us compute the contents of the o stream, produced at the output of
the distinct operator. We will show that this stream is composed of increasing
approximations of the value of O, and in fact O = limt→∞ o[t] if the limit exists.

We define the following one-argument function: R′(x) = λx.R(I, x). Notice
that the left input of the ↑R block is a constant stream with the value I. Due to
the stratified nature of the language, we must have ispositive(R′), so ∀x.R′(x) ≥
x. Also ↑R′ is time-invariant, so R′(0) = 0.

With this notation for R′ the previous circuit has the output as the following
simpler circuit:

49



C E

↑R′ + X O
o

z−1

We use the following notation: x ∪ y = distinct(x + y). As discussed in
Section 14.2.3 the ∪ operation computes the same result as set union when x
and y are sets. With this notation let us compute the values of the o stream:

o[0] =C +R′(0) = C ∪R′(0) = C

o[1] =C +R′(o[0]) = C ∪R′(C)

o[t] =C +R(o[t− 1]) = C ∪R′(o[t− 1])

Defining a new helper function S(x) = C ∪ R′(x), the previous system of
equations becomes:

o[0] =S(0)

o[1] =S(S(0))

o[t] =S(o[t− 1])

So, by induction o[t] = St(0), where by St we mean S ◦ S ◦ . . . ◦ S︸ ︷︷ ︸
t

. S is

monotone because R′ is monotone; thus, if there is a time k such that Sk(0) =
Sk+1(0), we have ∀j ∈ N.Sk+j(0) = Sk(0).

O is computed by the X operator as the limit of stream o: O = X(o) =
limn→∞ o[n]. If this limit exists (i.e., a fixed-point is reached), the circuit com-
putes the fixed point fixx.S(x). This is exactly the definition of the Datalog
semantics of a recursive relation definition: O = fixx.C ∪R(I, x).

Note that the use of unbounded domains (like integers with arithmetic op-
erations) does not guarantee convergence for all programs.

Our circuit implementation is in fact computing the value of relation O using
the standard näıve evaluation algorithm (e.g., see Algorithm 1 from [22]).

Observe that the “inner” part of the circuit is the incremental form of an-
other circuit, since is “sandwiched” between I and D operators. According to
Proposition 5.2, part 7, the circuit can be rewritten as:

C

I δ0

δ0

↑R∆ +
∫

O

z−1

(1)
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This form of the circuit is effectively implementing the semi-näıve eval-
uation of the same relation (Algorithm 2 from [22]). So the correctness of
semi-näıve evaluation is an immediate consequence of the cycle rule from Propo-
sition 5.2.

8.2 Example: a recursive query in DBSP

Here we apply the algorithm 8.1, that converts a recursive query into a DBSP
circuit, to a concrete Datalog program. The program computes the transitive
closure of a directed graph:

// Edge r e l a t i o n with head and t a i l
input r e l a t i o n E(h : Node , t : Node )
// Reach r e l a t i o n with source s and s ink t
output r e l a t i o n R( s : Node , t : Node )
R(x , y ) :− E(x , y ) .
R(x , y ) :− E(x , z ) , R( z , y ) .

Step 1: we ignore the fact that R is both an input and an output and we
implement the DBSP circuit corresponding to the body of the query. This query
could be expressed in SQL as:

( SELECT ∗ FROM E)
UNION
( SELECT E. h , R. t

FROM E JOIN R
ON E. t = R. s )

This query generates a DBSP circuit with inputs E and R:

E

R ./t=s πh,t

+ distinct R

Step 2: Lift the circuit by lifting each operator pointwise:

E

R ↑ ./t=s ↑πh,t

+ ↑distinct R

Step 3: Connect the feedback loop implied by relation R:

E

↑ ./t=s ↑πh,t

+ ↑distinct R

z−1
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Step 4: “bracket” the circuit, once with I -D , then with δ0-
∫

:

E δ0 I

↑ ./t=s ↑πh,t

+ ↑distinct D
∫

R

z−1

(2)

The above circuit is a complete implementation of the non-streaming recur-
sive query; given an input relation E it will produce its transitive closure R at
the output.

Now we use seminäıve evaluation 1 to rewrite the circuit (to save space in
the figures we will omit the indices from π and σ in the subsequent figures):

E δ0

(↑ ./)∆
(↑π)

∆

+ (↑distinct)
∆

∫
R

z−1

Using the linearity of ↑π, this can be rewritten as:

E δ0

(↑ ./)∆ ↑π

+ (↑distinct)
∆

∫
R

z−1

8.2.1 Mutually recursive rules

Given a stratified Datalog program we can compute a graph where relations
are nodes and dependences between relations are edges. We then compute the
strongly connected components of this graph. All relations from a strongly-
connected component are mutually recursive.

Let us consider the implementation of a single strongly-connected component
defining n relations Oi, i ∈ [n]. We can assume wlog that the definition of Oi

has the following structure:

Oi(v) :- Ci(v).
Oi(v) :- Ii(x), O0(v0), O1(v1), . . . , On−1(vn−1), v = . . . .

There are exactly n base cases, one defining each Oi. Also, we assume that
each Oi relation depends on an external relation Ii, which does not itself depend
on any Ok.

To compile these into circuits we generalize the algorithm from Section 8.1.1:
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1. For each recursive rule for Oi implement a circuit Ri that treats all Oj .j ∈
[n] and Ii in the rule body as inputs. Here is the circuit R0 for relation
O0:

I0

O0. . .
On−1

R0

2. Embed each circuit Ri as part of a “widget” as follows:

C0

I0

O0. . .
On−1

R0 + O′0

3. Finally, lift each such widget and connect them to each other via z−1

operators to the corresponding recursive inputs. The following is the shape
of the circuit computing O0; the O′j sources correspond to the widget
outputs of the other recursive circuits:

C0 E

I0 E

z−1

. . .

z−1

↑R0 + X O0

O′n−1

O′o

Theorem 8.3. The program defined by the previous circuit computes the re-
lations Oi as a function of the input relations Ij and Ci.

Proof. TODO.

Example: mutually recursive relations Consider the Datalog program
below computing the transitive closure of a graph having two kinds of edges,
blue (B) and red (R):

P(x,y) :- B(x,y).

Q(x,y) :- R(x,y).

P(x,y) :- B(x,z), Q(z,y).

Q(z,y) :- R(x,z), P(z,y).

O(x,y) :- P(x,y).

O(x,y) :- Q(x,y).

The program defined by the following circuit computes the relation O as a
function of the input relations R, B: VAL: I will add in Section 3.3

a consequence of Corollary 3.17
to justify the well-definedness
of this.
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B E + ↑distinct

z−1

z−1

↑distinct

X

X+

↑ ./

↑ ./

ER

+ O

P

Q

9 Incremental recursive queries

In Section 3–4 we showed how to incrementalize a relational query by compiling
it into a circuit, lifting the circuit to compute on streams, and applying the
·∆ operator to the lifted circuit. In Section 14 we showed how to compile a
recursive query into a circuit that employs incremental computation internally
to compute the fixed point. Here we combine these results to construct a circuit
that evaluates a recursive query incrementally. The circuit receives a stream of
updates to input relations, and for every update recomputes the fixed point. To
do this incrementally, it preserves the stream of changes to recursive relations
produced by the iterative fixed point computation, and adjusts this stream to
account for the modified inputs. Thus, every element of the input stream yields
a stream of adjustments to the fixed point computation, using nested streams.

This proposition gives the ability to lift entire circuits, including circuits
computing on streams and having feedback edges, which are well-defined, due
to Proposition 7.6. With this machinery we can now apply Algorithm 6.4 to
arbitrary circuits, even circuits built for recursively-defined relations. Consider
the “semi-naive” circuit from Section 8: and denote distinct ◦R with T :

I δ0 (↑T )
∆

∫
O

z−1

Lift the entire circuit using Proposition 7.7 and incrementalize it:

I I ↑δ0 ↑(↑T )
∆ ↑

∫
D O

↑z−1

Now apply the chain rule to this circuit, and use the linearity of δ0 and
∫

:

I ↑δ0 (↑(↑T )
∆

)
∆ ↑

∫
O

↑z−1

(3)

This is the incremental version of an arbitrary recursive query.
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9.1 Incrementalizing a recursive query

Here we take the DBSP circuit for the transitive closure of a graph generated
in Section 8.2 and convert it to an incremental circuit using algorithm 6.4.
The resulting circuit maintains the transitive closure as edges are inserted or
removed.

First we lift the circuit entirely, using Proposition 7.7:

E ↑δ0

↑(↑ ./)∆ ↑↑π

+ ↑(↑distinct)
∆ ↑

∫
R

↑z−1

We convert this circuit into an incremental circuit, which receives in each
transaction the changes to relation E and produces the corresponding changes
to relation R:

∆E I ↑δ0

↑(↑ ./)∆ ↑↑π

+ ↑(↑distinct)
∆ ↑

∫
D ∆R

↑z−1

We can now apply again the chain and cycle rules to this circuit:

∆E (↑δ0)
∆

(↑(↑ ./)∆
)
∆

(↑↑π)
∆

+ (↑(↑distinct)
∆

)
∆

(↑
∫

)
∆

∆R

(↑z−1)
∆

We now take advantage of the linearity of ↑δ0, ↑
∫

, ↑z−1, and ↑↑π to simplify
the circuit by removing some ·∆ invocations:

∆E ↑δ0

(↑(↑ ./)∆
)
∆ ↑↑π

+ (↑(↑distinct)
∆

)
∆ ↑

∫
∆R

↑z−1

There are two applications of ·∆ remaining in this circuit: (↑(↑ ./)∆
)
∆

and

(↑(↑distinct)
∆

)
∆

. We expand their implementations separately, and we stitch

55



them into the global circuit at the end. This ability to reason about sub-circuits
highlights the modularity of DBSP.

The join is expanded twice, using the bilinearity of ↑ ./ and ↑↑ ./. Let’s
start with the inner circuit, implementing (↑ ./)∆

, given by Theorem 5.5:

a

b

(↑ ./)∆ o ∼=
a

b

I

I z−1

↑ ./

↑ ./

+ o

Now we lift and incrementalize to get the circuit for (↑(↑ ./)∆
)
∆

:

a

b

I

I

↑I

↑I ↑z−1

↑↑ ./

↑↑ ./

+ D o

Applying the chain rule and the linearity of ↑I and ↑z−1:

a

b

↑I

↑I ↑z−1

(↑↑ ./)∆

(↑↑ ./)∆

+ o

We now have two applications of (↑↑ ./)∆
. Each of these is the incremental

form of a bilinear operator, so it in the end we will have 2× 2 = 4 applications
of ↑↑ ./. Here is the final form of the expanded join circuit:

a

b

↑I

I

I

z−1

I

↑I

z−1

I ↑z−1

↑z−1

↑↑ ./

↑↑ ./

↑↑ ./

↑↑ ./

+ o

(4)

Returning to (↑(↑distinct)
∆

)
∆

, we can compute its circuit by expanding once
using Proposition 6.3:

i (↑(↑distinct)
∆

)
∆ o ∼=

i I ↑I ↑z−1

↑↑H D o

Finally, stitching all these pieces together we get the final circuit shown in
Figure 1.
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∆E ↑δ0

↑I

I

I

z−1

I

↑I

z−1

I ↑z−1

↑z−1

↑↑ ./

↑↑ ./

↑↑ ./

↑↑ ./

+ ↑↑π

+ I ↑I ↑z−1

↑↑H D ↑
∫

∆R

↑z−1

Figure 1: Final form of circuit from Section 8.2 which is incrementally main-
taining the transitive closure of a graph.

10 Complexity of recursive incremental circuits

Time complexity The time complexity of an incremental recursive query
can be estimated as a product of the number of fixed point iterations and the
complexity of each iteration. The incrementalized circuit (3) never performs
more iterations than the non-incremental circuit (1): once the non-incremental
circuit reaches the fixed point, its output is constant, and the derivative of
corresponding value in the incrementalized circuit becomes 0.

Moreover, the work performed by each operator in the incremental circuit
is asymptotically better than the non-incremental one. As a concrete example,
consider a join in a recursive circuit. A non-incremental implementation is
shown in the Appendix in example 2. The incremental implementation of the
same circuit is in circuit 5, and contains 4 join operators. The work performed by
the non-incremental join is O(|DB|2) for each iteration. The size of the inputs
of each of the joins in the incremental circuit is shown below. We notice that the
four join operators perform work O(|∆DB|2), O(|DB||∆DB|), (O|DB||∆DB|),
and O(|DB|0) respectively (the last operator performs work only in the first
iteration), so each of them is asymptotically better than the non-incremental
version.

In this diagram we annotate edges with the size of the collections flowing
along the edge. The a stream is produced by a δ0 operator; it contains initially
a change to the database, but afterwards all elements are 0 – we show this with
|∆DB|, 0, 0.
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a

b

|∆DB|, 0, 0

|∆∆DB|

↑I

I

I

z−1
|∆DB|

|DB|, 0, 0

I

↑I

z−1

I ↑z−1

↑z−1

|∆DB|

|∆DB|
|DB|

↑↑ ./

↑↑ ./

↑↑ ./

↑↑ ./

|DB|
+ o

(5)

Space complexity Integration (I ) and differentiation (D) of a stream ∆s ∈
SSA use memory proportional to

∑
t2

∑
t1
|s[t1][t2]|, i.e., the total size of changes

aggregated over columns of the matrix. The unoptimized circuit integrates and
differentiates respectively inputs and outputs of the recursive program fragment.
As we move I and D inside the circuit using the chain rule, we additionally store
changes to intermediate streams. Effectively we cache results of fixed point iter-
ations from earlier timestamps to update them efficiently as new input changes
arrive. Notice that space usage is proportional to the number of iterations of
the inner loop that computes the fixed-point. Fortunately, many recursive al-
gorithms converge in a relatively small number of steps (for example, transitive
closure requires a number of steps that is the log of the diameter of the graph).

11 Additional query languages

In this section we describe several query models that go behind stratified Datalog
and show how they can be implemented in DBSP.

11.1 Aggregation

Aggregation in SQL applies a function a to a whole set producing a “scalar”
result with some type R: a : 2A → R. We convert such aggregation functions
to operate on Z-sets, so in DBSP an aggregation function has a signature a :
Z[A]→ R.

The SQL COUNT aggregation function is implemented on Z-sets by aCOUNT :
Z[A] → Z, which computes a sum of all the element weights: aCOUNT(s) =∑

x∈s s[x]. The SQL SUM aggregation function is implemented on Z-sets by
aSUM : Z[R] → R which performs a weighted sum of all (real) values: aSUM(s) =∑

x∈s x× s[x].
With this definition the aggregation functions aCOUNT and aSUM are in fact

linear transformations between the group Z[A] and the result group (Z, and R
respectively).
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If the output of the DBSP circuit can be such a “scalar” value, then ag-
gregation with a linear function is simply function application, and thus it is
automatically incremental. However, in general, for composing multiple queries
we require the result of an aggregation to be a singleton Z-set (containing a
single value), and not a scalar value. In this case the aggregation function is
implemented in DBSP as the composition of the actual aggregation and the
makeset : A → Z[A] function, which converts a scalar value of type A to a

singleton Z-set, defined as follows: makeset(x)
def
= 1 · x.

In conclusion, the following SQL query: SELECT SUM(c) FROM I is imple-
mented as the following circuit:

I πC aSUM makeset O

The lifted incremental version of this circuit is interesting: since π and aSUM
are linear, they are equivalent to their own incremental versions. Although
(↑makeset)

∆
= D ◦↑makeset◦ I cannot be simplified, it is nevertheless efficient,

doing only O(1) work per invocation, since its input and output are singleton
values.

An aggregation function such as AVG can be written as the composition of
a more complex linear function that computes a pair of values using SUM and
COUNT, followed by a makeset and a selection operation that divides the two
columns.

SELECT AVG(c) FROM I

I πC (aSUM, aCOUNT) makeset σ/ O

Finally, some aggregate functions, such as MIN, are not incremental in gen-
eral, since for handling deletions they may need to know the full set, and not just
its changes. The lifted incremental version of such aggregate functions is imple-
mented essentially by “brute force”, using the formula (↑aMIN)∆

= D ◦ ↑aMIN ◦ I .
Such functions perform work proportional to R(s) at each invocation.

Note that the SQL ORDER BY directive can be modeled as a non-linear ag-
gregate function that emits a list. However, such an implementation it is not
efficiently incrementalizable in DBSP. We leave the efficient handling of ORDER
BY to future work.

Even when aggregation results do not form a group, they usually form a
structure with a zero element. We expect that a well-defined aggregation func-
tion maps empty Z-sets to zeros in the target domain.

11.2 Nested relations

11.2.1 Indexed partitions

Let A[K] be the set of functions with finite support from K to A. Consider
a group A, an arbitrary set of key values K, and a partitioning function
k : A → A[K] with the property that ∀a ∈ A.a =

∑
k(a). We call elements of

A[K] indexed values of A — indexed by a key value.
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Notice that A[K] also has a group structure, and k itself is a linear function
(homomorphism). As an example, if A = Z[B0 ×B1], we can use for k the first
projection k : A→ Z[A][B0], where k(a)[b] =

∑
t∈a,t|0=b a[t] · t. In other words,

k projects the elements in Z[B0 × B1] on their first component. This enables
incremental computations on nested relations. This is how operators such as
group-by are implemented: the result of group-by is an indexed Z-set, where
each element is indexed by the key of the group it belongs to. Since indexing is
linear, its incremental version is very efficient. Notice that the structure Z[A][K]
represents a form of nested relation.

11.3 Grouping; indexed relations

Pick an arbitrary set K of “key values.” Consider the mathematical structure of
finite maps from K to Z-sets over some other domain A: K → Z[A] = Z[A][K].
We call values i of this structure indexed Z-sets: for each key k ∈ K, i[k] is
a Z-set. Because the codomain Z[A] is an abelian group, this structure is itself
an abelian group.

We use this structure to model the SQL GROUP BY operator in DBSP. Con-
sider a partitioning function p : A → K that assigns a key to any value in

A. We define the grouping function Gp : Z[A] → (K → Z[A]) as Gp(a)[k]
def
=∑

x∈a.p(x)=k a[x] · x. When applied to a Z-set a this function returns a indexed

Z-set, where each element is called a grouping8: for each key k a grouping is
a Z-set containing all elements of a that map to k (as in SQL, groupings are
multisets, represented by Z-sets). Consider our example Z-set R from Section 4,
and a key function p(s) that returns the first letter of the string s. Then we
have that Gp(R) = {j 7→ {joe 7→ 1}, a 7→ {anne 7→ −1}}, i.e., grouping with
this key function produces an indexed Z-set with two groupings, each of which
contains a Z-set with one element.

The grouping function Gp is linear for any p. It follows that the group-
by implementation in DBSP is automatically incremental: given some changes
to the input relation we can apply the partitioning function to each change
separately to compute how each grouping changes.

11.4 GROUP BY-AGGREGATE

Grouping in SQL is almost always followed by aggregation. Let us consider an
aggregation function a : (K × Z[A]) → B that produces values in some group
B, and an indexed relation of type Z[A][K], as defined above in Section 14.2.8.
The nested relation aggregation operator Agga : Z[A][K] → B applies a to

the contents of each grouping independently and adds the results: Agga(g)
def
=∑

k∈K a(k, g[k]). To apply this to our example, let us compute the equivalent of
GROUP-BY count; we use the following aggregation function count : K×Z[A],
count(k, s) = makeset((k, aCOUNT(s))), using the Z-set counting function aCOUNT

8We use “group” for the algebraic structure and “grouping” for the result of GROUP BY.
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from Section 14.2.9; the notation (a, b) is a pair of values a and b. Then we have
Aggcount(Gp(R)) = {(j, 1) 7→ 1, (a,−1) 7→ 1}.

Notice that, unlike SQL, DBSP can express naturally computations on in-
dexed Z-sets, they are just an instance of a group structure. One can even
implement queries that operate on each grouping in an indexed Z-set. However,
our definition of incremental computation is only concerned with incrementality
in the outermost structures. We leave it to future work to explore an appropriate
definition of incremental computation that operates on the inner relations.

A very useful operation on nested relations is flatmap, which is essentially
the inverse of partitioning, converting an indexed Z-set into a Z-set: flatmap :
Z[A][K] → Z[A × K]. flatmap is in fact a particular instance of aggregation,
using the aggregation function a : K × Z[A] → Z[A ×K] defined by a(k, s) =∑

x∈s[k] s[k][x] ·(k, x). For our previous example, flatmap(Gp(R)) = {(j, joe) 7→
1, (a, anne) 7→ −1}.

If we use an aggregation function a : K × Z[A] that is linear in its second
argument, then the aggregation operator Agga is linear, and thus fully incremen-
tal. As a consequence, flatmap is linear. However, many practical aggregation
functions for nested relations are in fact not linear; an example is the count
function above, which is not linear since it uses the makeset non-linear func-
tion. Nevertheless, while the incremental evaluation of such functions is not
fully incremental, it is at least partly incremental: when applying a change to
groupings, the aggregation function only needs to be re-evaluated for groupings
that have changed.

11.5 Streaming joins

Consider a binary query T (s, t) = I (t) ↑ ./ s. This is the relation-to-stream
join operator supported by streaming databases like ksqlDB [32]. Stream t
carries changes to a relation, while s carries arbitrary data, e.g., logs or teleme-
try data points. T “discards” values from s after matching them against the
accumulated contents of the relation.

t

s

I

./ o

11.6 Explicit delay

So far the z−1 operator was confined to its implicit use in integration or differen-
tiation. However, it can be exposed as a primitive operation that can be applied
to streams or collections. This enables programs that can perform time-based
window computations over streams, and convolution-like operators.
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11.7 Multisets/bags

Since Z-sets generalize multisets and bags, it is easy to implement query oper-
ators that compute on such structures. For example, while SQL UNION is Z-set
addition followed by distinct , UNION ALL is just Z-set addition.

11.8 Window aggregates

Streaming databases often organize the contents of streams into windows, which
store a subset of data points with a predefined range of timestamps. The cir-
cuit below (a convolution filter in DSP) computes a fixed-size sliding-window
aggregate over the last four timestamps defined by the Ti functions.

s T0

z−1

T1

z−1

T2

z−1

o

In practice, windowing is usually based on physical timestamps attached to
stream values rather than logical time. For instance, the CQL [9] query “SELECT
* FROM events [RANGE 1 hour]” returns all events received within the last
hour. The corresponding circuit (on the left) takes input stream s ∈ SZ[A] and
an additional input θ ∈ SR that carries the value of the current time.

s

θ

I W o
∼=

s

θ

+ W o

z−1

where the window operator W prunes input Z-sets, only keeping values with
timestamps less than an hour behind θ[t]. Assuming ts : A → R returns the

physical timestamp of a value, W is defined as W (v, θ)[t]
def
= {x ∈ v[t].ts(x) ≥

θ[t] − 1hr}. Assuming θ increases monotonically, W can be moved inside in-
tegration, resulting in the circuit on the right, which uses bounded memory to
compute a window of an unbounded stream. This circuit is a building block of
a large family of window queries, including window joins and aggregation. We
conjecture that DBSP can express any CQL query.

i A

S −

+ w

z−1

11.9 Relational while queries

(See also non-monotonic semantics for Datalog¬ and Datalog¬¬[5].) To illus-
trate the power of DBSP we implement the following “while” program, where
Q is an arbitrary relational algebra query:
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x := i;

while (x changes)

x := Q(x);

The DBSP implementation of this program is:

i δ0 + ↑Q D
∫

x

z−1

This circuit can be converted to a streaming circuit that computes a stream
of values i by lifting it; it can be incrementalized using Algorithm 6.4 to compute
on changes of i:

∆i ↑δ0 + (↑↑Q)
∆ ↑D ↑

∫
∆x

↑z−1

Part II

Implementation

12 Well-formed circuits

In this section we formalize the shape legal computations allowed in our frame-
work. We model computations as circuits. A circuit is a directed graph where
each vertex is a primitive computation node (a function) and each edge has a
type; at circuit evaluation time each edge will represent one value of that type.

We provide a recursive set of circuit construction rules. We call a circuit
well-formed (WFC) if it can be constructed by a sequence of applications of
these rules. For each WFC construction rule of a circuit C from simpler parts
we also provide typing derivation rules and a denotational semantics for JCK
that reduces the meaning of C to its components. The semantics of a circuit
expresses each circuit output as a function of the circuit inputs.

12.1 Primitive nodes

We assume a set of base types that represent abelian groups: A1, A2, . . . ,
B1, B2, . . .. (The base types do not include stream types; stream types are
derived.)

We are given a fixed set of primitive computation nodes P; each prim-
itive node has an input arity k. Iin our applications we only use unary and
binary primitive nodes, so we will restrict ourselves to such nodes, but these
constructions can be generalized to nodes with any arity. A binary node n ∈ P
has a type of the form n : A0×A1 → A, where all As are base types. We assume
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the existence of a total function “meaning” J·K that gives the semantics of each
node: JnK : JA0K× JA1K→ JAK.

In Section 3.1 we have seen many generic primitive nodes: the identity func-
tion id : A → A, scalar function nodes (where all inputs are base types Ai),
sum

⊕
: A × A → A, negation − : A → A, pairs 〈·, ·〉 : A × B → 〈A,B〉,

fst : A×B → A and snd : A×B → B. Their typing and semantics is standard.
We will introduce more domain-specific primitive nodes when discussing specific
applications, in Section 14.

12.2 Circuits as graphs

A circuit is a 5-tuple C = (I,O, V,E,M).

• I is an ordered list of input ports. An input port indicates a value produced
by the environment. We use letters like i, j for input ports. Each input
port has a type i : A for some abelian group A (where A can be a stream
type).

• O is an ordered list of output ports. An output port represents a value
produced by the circuit. as a function of the values of the input ports. We
use letters like o, l for output ports. Each output port has a type o : A for
some abelian group A (where A can be a stream type).

• V is a set of internal vertices.

• E is a set of edges; E ⊆ (V × V ) ∪ (I × V ) ∪ (V ×O). We call an edge of
the form (i, v) for i ∈ I, v ∈ V an input edge, and an edge of the form
(v, o) for v ∈ V, o ∈ O an output edge.

• Each internal vertex v is associated with a primitive computation node or
with another circuit; for primitive nodes the implementation function
M : V → P gives the primitive computation associated with a vertex.

Given a circuit C we use the suffix notation to indicate its various compo-
nents, e.g., C.O is the list of output edges, and C.V is the set of vertexes.

12.3 Circuit semantics

Given a circuit C with k input ports C.I = (ij , j ∈ [k]) with types ij : Aj , j ∈
[k], and m output ports C.O = (oj , j ∈ [m]) with types oj : Bj , j ∈ [m],
the semantics of the circuit is given by the semantics of all its output ports:
JCK =

∏
j∈[m]JC.ojK. The semantics of output port C.oj is a total function

JC.ojK : JA0K× . . . JAk−1K→ JBjK.

12.4 Circuit construction rules

We give a set of inductive rules for constructing WFCs. In the inductive defini-
tions we always combine or WFCs to produce a new WFC.
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These rules maintain the following invariants about all constructed circuits,
which can proved by structural induction:

• All input and outputs are either all scalars or they are all streams of the
same “depth”.

• All circuits are time-invariant.

• For circuits operating over streams, all circuit outputs are causal in all of
the circuit inputs.

12.4.1 Single node

Given a primitive (unary or binary) node n with type n : A0×A1 → B, (where
each Ai, B is a base type), we can construct a circuit C(n) with a single vertex.
The circuit has exactly 2 input ports and any number m of output ports having
all the same type B; the output ports will carry all the same value.

n

i0

i1

. . .

o0

om−1

Formally:

• C(n).V = {v}.

• C(n).I = (ij , j ∈ [k])

• C(n).O = (oj , j ∈ [m])

• C(n).E = {(ij , v), j ∈ [k]} ∪ {(v, oj), j ∈ [m]}

• C(n).M(v) = n.

i0 : A0, . . . , ik−1 : Ak−1, n : A0 ×A1 × . . . Ak−1 → B

∀j ∈ [m].n.oj : B

All output edges of the circuit produce the same value. JC(n).ojK : JA0K ×
. . . JAk1

K→ JAK given by JC(n).ojK = JnK.

12.4.2 Delay node

A similar circuit construction rule is applicable to the z−1 node, with the differ-
ence that z−1 operates on streams. Given a type A we can construct the circuit
Cz with a single vertex. The circuit has 1 input port of type i : SA and any
number m of output ports with the same type SA.

z−1i . . .

o0

om−1

Formally:
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• Cz.V = {v}.

• Cz.I = (i).

• Cz.O = (oj , j ∈ [m]).

• Cz.E = {(i, v)} ∪ {(v, oj), j ∈ [m]}.

• Cz.M(v) = z−1 : SA → SA

i : SA
Cz.oj : SA

All output edges of the circuit produce the same value. JCz.ojK : JSAK →
JSAK given by JCz.ojK = Jz−1K.

12.4.3 Sequential composition

Given two WFCs C and D with inputs (and necessarily outputs as well) in
the same clock domain, their sequential composition is specified by a set of
pairs of ports; each pair has an output port of C and an input port of D:
P = {(oj , ij), j ∈ [n]}, where oj ∈ C.O and ij ∈ D.I with respectively matching
types. The sequential composition C +P D is a new circuit where each output
port of C is “connected” with the corresponding input port of D from P .

To simplify the definition, we can assume WLOG that each of C has exactly
2 inputs and outputs and D has 2 inputs and 1 output, and also that the second
output of C is connected to first input of D (i.e., P contains at most one pair or
ports). Circuits and connections with more inputs and outputs can be built by
“bundling” multiple edges using the pair operator 〈·, ·〉. Sequential composition
is given by the following diagram:

C

o0

o1

i0

i1

D l0

j0

j1

P = (o1, j0)
⇒

C +P D

C

o0i0

i1 D l0

j1

Formally the definition is given by:

• (C +P D).I = C.I ∪D.I \ {i | ∃o.(o, i) ∈ P}.

• (C +P D).O = C.O \ {o | ∃i.(o, i) ∈ P} ∪D.O.

• (C +P D).V = C.V ∪D.V .

• (C +P D).E = C.E ∪D.E \ {(v, o) | ∃i.(o, i) ∈ P, v ∈ C.V }
\{(i, v) | ∃i.(o, i) ∈ P, v ∈ D.V }∪{(u, v) | ∃(o, i) ∈ P, (u, o) ∈ C.E, (i, v) ∈
D.E}.
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• (C +P D).M = {v 7→ C.M(v) | v ∈ C.V } ∪ {v 7→ D.M(v) | v ∈ D.V }.

C : A0 ×A1 → B0 ×B1

D : B1 ×A2 → B2

P = {(C.O0, D.I0)}
D +P C : A0 ×A1 ×A2 → B0 ×B2

J(C +P D).O0K = JC.O0K
J(C +P D).O1K = λi0, i1, j1.JDK(JCK(i0, i1), j1)

MIHAI: We may also need a
parallel compositionThis transformation combines acyclic graphs into an acyclic graph.

12.4.4 Adding a back-edge

We can assume WLOG that we are given a circuit C with two inputs and two
outputs. Assume that C’s output port o ∈ C.O has a stream type o : SA VAL: According to the model,

the two outputs can pro-
duce different streams. Alge-
braically, this means the cir-
cuit C is implementing two op-
erators, one for each output,
say T (i0, i) for output o and
T0(i0, i) for output o0.

MIHAI: Yes, that is correct.
In fact, this is the main differ-
ence between circuits and oper-
ators: a circuit can have many
different outputs, while an op-
erator always has exactly 1.

and the input port i ∈ C.I has the same type i : SA. We can create a new

circuit C
x
io by adding two nodes: one z node implemented by z−1 and one p

node implemented by +SA , and a new input port i′ : SA, connected as in the
following diagram:

C o

o0i0

i ⇒
i′ + C

o0i0

z−1

Formally the definition is given by:

• (C
x
io).I = C.I \ {i} ∪ {i′}.

• (C
x
io).O = C.O \ {o}.

• (C
x
io).V = C.V ∪ {z, p}.

• (C
x
io).E = C.E ∪ {(i′, p)} \ {(u, o) ∈ C.E | u ∈ C.V } ∪ {(p, v) | ∃i.(i, v) ∈

C.E} ∪ {(u, p) | ∃(u, o) ∈ C.E}.

• (C
x
io).M = C.M ∪ {p 7→ +SA , z 7→ z−1}.

We call the edge connecting z−1 to
⊕

a back-edge. One can prove by in-
duction on the structure of C that the graph of C ignoring all back-edges is
acyclic.

C : SA × SB → SA × SC
C

x
io: SA × SB → SC
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Since the source of a back-edge is always z−1, strict operator, and any cir-
cuit is causal, the composition has a well-defined semantics, according to Corol-
lary 3.17.

JC
x
ioK = λi0, i

′.fix i.JC.O0K(i0, i′ + Jz−1K(i)).

VAL: For notation T, T0
please see my comment above.
Which one of T or T0 is
JC.O.0K in this definition? I
think you intend it to be T0
in order to produce the right
output. But then, the well-
definedness of the semantics
of this construction does not
follow from Corollary 3.17
because that result uses T
rather than T0. I am working
on the more general result that
we need to justify this case.

12.4.5 Lifting a circuit

Given a circuit C with scalar inputs and outputs, we can lift the entire circuit
to operate on streams. As before, we can assume WLOG that C has a single
input and output. If the circuit is a function: C : A→ B, the lifted circuit ↑C
operates time-wise on streams: ↑C : SA → SB .

C ⇒ ↑C

Formally the definition is given by:

• (↑C).I = C.I.

• (↑C).O = C.O.

• (↑C).V = C.V .

• (↑C).E = C.E.

• (↑C).M = {↑(C.M(v)) | v ∈ C.V }.

C : A→ B

↑C : SA → SB
If C is a WFC, then J↑CK = λs.JCK ◦ s, for s : N→ B = SB , as described in

Section 3.1.

12.4.6 Bracketing

This construction uses nodes δ0 : A→ SA and
∫

: SA → A which “create” and
“eliminate” streams, as defined in Section 7.1. These nodes are always used in
pairs.

Given a WFC C computing on streams with a single input i : SA and a
single output of the exact same type o : SA, we can “bracket” this circuit with
a pair of nodes δ0 and

∫
as follows:

C oi [C]
⇒

i′ δ0 C
∫

o′

The types of the resulting input and given by i′ : A, and o′ : A.
It is very important for C to have a single input and output; this prevents

connections to C from going “around” the bracketing nodes. If multiple input
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or outputs are needed to C, they can be “bundled” into a single one using a
pairing operator 〈·, ·〉.

Formally the definition is given by:

• [C].I = {i′}.

• [C].O = {o′}.

• [C].V = C.V ∪ {d, s}.

• [C].E = C.E ∪ {(i′, d), (s, o′)} \ {(i, v) | v ∈ V } \ {(v, o) | v ∈ V } ∪
{(d, v) | (i, v) ∈ C.E} ∪ {(v, s) | (v, o) ∈ C.E}.

• [C].M = C.M ∪ {d 7→ δ0, s 7→
∫
}.

C : SA → SB
[C] : A→ B

The semantics of the resulting circuit is just the composition of the three
functions: J[C]K = J

∫
K ◦ JCK ◦ Jδ0K. (However, note that the semantics of

∫
is

only defined for streams that are zero almost everywhere.)

Theorem 12.1. For any WFCs all inputs and outputs are streams of the same
“depth”.

Proof. The proof proceeds by induction on the structure of the circuit. All con-
struction rules maintain this invariant, assuming that it is true for all primitive
nodes.

13 Implementing WFC as Dataflow Machines

In this section we give a compilation scheme that translates a WFC into a set of
cooperating state machines that implement the WFC behavior. Each primitive
node is translated into a state machine, each circuit is translated into a control
element, and each edge is translated into a communication channel between two
state machines, storing at most one value at any one time. MIHAI: I realize that this

would be much simpler if we
force the toplevel circuit to
have exactly 1 input and out-
put edge. I will work on that.

There are essentially 6 kinds of nodes in our circuits:

• Lifted scalar nodes.

• Delay nodes z−1 operating on streams.

• Delay nodes z−1 operating on nested streams.

• “Loop entry” nodes, corresponding to δ0.

• “Loop exit” nodes, corresponding to
∫

.

• Controller nodes, corresponding to circuits.

There are 4 types of events in our implementation:
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Reset events: cause a circuit to be initialized. The main effect is to cause z−1

nodes to initialize their internal state to 0. The reset events have no effect
on any other node.

Latch events: these events cause z−1 nodes to emit their internal state as an
output. The latch events have no effect on any other node.

Data events: these events signal to a node or circuit that data is present on
one of the input channels.

Repeat events: signal that a loop has to perform one more iteration. Only
sent between

∫
and corresponding δ0 nodes.

Here are the state machines of each of these nodes: MIHAI: This is pseudocode,
but it would probably look bet-
ter as real code.

Environment state machine The environment feeds data to the input edges
of a top-level circuit and retrieves results from the output edges. The environ-
ment is expected to operate in epochs, executing the following infinite loop:

• Send a reset event to circuit

• Repeat forever

– Assign data to all input edges.

– Wait for all output edges to receive a “data” event.

– Collect results from all output edges.

Circuit state machine

1. On receipt of a reset event:

• Send a reset event to all nodes in the circuit.

• Send a latch event to all nodes in the circuit.

2. On receipt of data on an input edge send a data event to the destinations
connected to the input edge. The environment of the circuit should send

Primitive node state machine

1. On receipt of a “data” event check if all inputs have received data. If they
have, compute the output, and send it as a “data” event on all output
wires.

z−1 node state machine Stores a value in the internal state.

1. On receipt of “reset” event set internal state to 0.

2. On receipt of “latch” event, send a data event on the output channel with
the value that is already present there.

3. On receipt of “data” event, copy internal state to output channel and
input to internal state.
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z−1 node operating on a nested stream state machine This node in-
ternally stores a potentially unbounded list of values as internal state. It also
maintains a counter “time” to index within this list.

1. On receipt of a “reset” even set time to 0.

2. On receipt of a “latch” event, send the value in list[time] as a “data” event
to the output channel.

3. On receipt of a “data” event

• Increment “time”

• Set the output channel to the list[time] value (zero if the list is not
long enough, and grow the list)

• Store data value received in list[time].

Loop entry node state machine

1. On receipt of a “data” event

• Send a “reset” event to circuit that is connected as output

• Send a “data” event to the circuit connected as output with the data
received

2. On receipt of a “repeat” event send a “data” event with value 0 to the
circuit connected as output.

Loop exit node state machine Maintain an internal accumulator.

1. On receipt of a “reset” event set the accumulator to 0.

2. On receipt of a “data” event:

• if the data value is 0, send a “data” event to the output channel with
the current value of the accumulator.

• otherwise add the input value to the accumulator and send a “repeat”
event to the corresponding delta0 node.

14 Implementing Differential Datalog in DBSP

This section gives an implementation of DDlog in terms of DBSP circuits. This
is a precise specification of the semantics of DDlog.
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1 DatalogProgram := TypeDeclaration*

2 RelationDeclaration*

3 Rule*

4 TypeDeclaration := ...

5 Type := ...

6 Expression := ...

7 Id := ... // identifiers

8 RelationDeclaration := ("input"|"output")? "relation"

9 Id "(" ColumnTypes? ")"

10 ColumnTypes := ColumnType ( "," ColumnType )*

11 ColumnType := Id ":" Type

12 Rule := Head ":-" Body

13 Head := RelationTerm

14 RelationTerm := Id "(" Columns? ")"

15 Columns := Variable ( "," Variable )*

16 Body := RelationTerm ( "," Term )?

17 Term := RelationTerm

18 | Predicate

19 | NegatedTerm

20 | VariableDefinitionTerm

21 | FlatmapTerm

22 | GroupByTerm

23 NegatedTerm := "not" RelationTerm

24 VariableDefinitionTerm := "var" Variable "=" Expression

25 FlatmapTerm := "var" Variable "=" "Flatmap" "(" Id ")"

26 GroupByTerm := "var" Variable "="

27 Expression "." "group_by" "(" VariableList? ")"

28 Variable := Id

29 VariableList := Id (, Id)*

30 Predicate := Expression

Figure 2: Datalog rules grammar.

14.1 Differential Datalog syntax and semantics

We describe the syntax and semantics of a dialect of Datalog called Differential
Datalog, or DDlog. We start by ignoring the differential aspects, we will return
to these in Section 14.3. In defining the syntax and semantics of Datalog we
mostly follow standard definitions, e.g., [5]. In this section we give a syntax-
directed translation of Datalog programs into circuits. We model a core of the
language (ignoring constructs that can be viewed as syntactic sugar), to simplify
the description. We argue informally that the resulting circuits implement the
standard semantics of Datalog.

Our Datalog is strongly-typed, supports stratified negation and recursion,
and is enhanced with additional operators, such as grouping (which we will
describe below). Figure 2 shows the EBNF-like grammar of the core DDlog
language (omitting types and expressions).
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Types Assume that we are given a set of basic types, including integer,
Booleans, string, but also structures (product types), unions (sum types),
tuples, vectors, and sets. Each such type must support an operation to compare
values for equality. This is the only requirement to store values of a particular
type in a set.

We allow arbitrary computations over the base types (e.g., arithmetic) through
the use of built-in functions (e.g., addition, subtraction, equality comparison,
etc.). A standard language of expressions can be used to combine built-in func-
tions into more complex functions. We require all such functions to be total and
deterministic. We treat such computations as uninterpreted functions (black
boxes) and no longer concern ourselves with them in this document.

All DDlog programs must be strongly typed, but we don’t specify the typing
rules in this document (e.g., predicates must produce Boolean results). The
typing rules are standard. Only the semantics of well-typed programs is defined.

Relations Datalog programs compute over relations. The inputs and outputs
of a Datalog program are relations. The standard Datalog semantics of a relation
is a set of values from some domain.

DDlog programs continuously interact with their environment. Thus they
distinguish relations by their roles. Some relations are input relations; their
contents is supplied by the environment. Some relations are declared as output
relations. The contents of these relations is visible to external observers.

A DDlog program must have a declaration for each relation, specifying the
type of its elements, as in this example:

input relation People(name: string , age: integer)

relation Ages(age: integer)

output relation Names(name: string)

This declares three relations. The first relation is an input relation, named
People, and it has 2 columns, name of type string, and age of type integer.
Its elements are 2-tuples of type (string, integer).

The value of relation People is a set of such tuples. As a running exam-
ple, let us assume that the input relation People has the value (supplied by
the program’s environment) {(bob, 10), (john, 20), (amy, 10)}, containing three
tuples.

The relation Names has a single column, and it is an output relation. This
means that the environment can observe it’s contents. The relation Ages is
neither input nor output. The Datalog program must contain rules that show
how Ages and Names are computed from the input relations, i.e., People.

Rules Besides type and relation declarations, the most important part of a
Datalog program is a set of rules. A Datalog rule defines the contents of a
relation as a function of other relations. A rule has a head and a body, as
shown in the grammar from Figure 2. In the following rule:

Names(n) :- People(n, a).
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the head is to the left of the turnstyle symbol :-, and it is always a relation with
variables standing for the tuple fields. This rule defines how Names is computed
from the contents of People. In this example the rule’s head is Names(n). You
may guess that the value of Names is the set {bob, john, amy}. We will explain
how this result is computed. The turnstyle symbol can be read as “if”. n is a
variable of type string, standing for the column name (the type of n is string
because it stands positionally for the declared column name with type string

of relation Names). The values that n may take are defined by the body of the
rule — each variable in the head must appear in the body of the rule.

The body of a rule consists of one or two terms separated by commas; a
comma is read as an “and”, and such a rule is form of a conjunctive query. The
valuation computed by the body is defined recursively on the list of terms in
the body. Datalog allows an arbitrary number of terms in a rule body, but our
grammar allows only two. We argue in the paragraph below that this does not
reduce the power of the language, but it simplifies the description.

The grammar of terms is shown in line 16 in Figure 2. We will discuss the
semantics of the various terms and their implementation as circuits in the rest
of this section.

Valuations The body of the above rule is People(n, a). The body defines
two variables, n and a. The semantics of a rule body is a valuation: a set of
values that the variables defined by the body may jointly take. Our example
body defines a valuation for the tuple of variables (n, a). Since the body is
People(n,a), the valuation defines the set of values for (n, a) to be the contents
of the relation People, that is (n, a) ∈ {(bob, 10), (john, 20), (amy, 10)}.

We can assume without loss of generality that every rule body has at most
two terms. A rule with n terms can be decomposed into n - 1 rules with 2 terms
each by introducing a temporary relation that stores the entire valuation. For
example, consider the following rule:

input relation Lives(name:string , country:string)

output relation USAges(age: integer)

USAges(a) :- People(n, a), Lives(n, c), c == "USA".

The rule prefix People(n, a), Lives(n, c) defines a valuation for vari-
ables n, a, c. By introducing a temporary relation Temp(n, a, c) we can
rewrite this rule as two rules, producing the same result for the visible relatin
USAges:

relation Temp(name:string , age:integer , country:string)

Temp(n, a, c) :- People(n, a), Lives(n, c).

USAges(a) :- Temp(n, a, c), country == "USA".

14.2 Compiling Datalog programs to circuits

A Datalog program is a set of rules computing over valuations and relations.
Both relations and valuations are represented as Z-sets in a translation to cir-
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cuits, by representing each set by a Z-set with weights 1. (Subsequent optimiza-
tions can relax this requirement for internal relations as long as the semantics
of output relations is preserved, since only output relations are observable from
the environment. We expand on this in Section 6.1.)

14.2.1 Rule compilation

Each rule is compiled to a circuit with the following properties:

• Each relation and valuation is represented by a Z-set.

• The head of the rule is the output edge of the circuit;

• The relations that appear in the body are inputs of the circuit;

• The circuit structure is defined by the terms that appear in the relation
body (as discussed in the rest of this section);

• The turnstyle is compiled into a projection operator (described in Sec-
tion 14.2.4);

• The valuation at a conjunction in the rule body is translated into an edge
in the circuit, carrying Z-set values.

This translation is illustrated in Figure 3.

Figure 3: Compilation of a DDlog rule into a circuit.

The compilation of a program containing a set of rules produces a “toplevel”
circuit, composed of the circuits for the rules interconnected with each other
(as described in Section 14.2.2). For the toplevel circuit the input relations
correspond to the input edges. (input relations cannot appear in the head of
any rule). Similarly, the output relations will correspond to output edges of the
toplevel circuit, (each output relation must appear in some rule head).
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14.2.2 Relation terms in rule bodies

A RelationTerm is a term in a rule body containing a relation with vari-
ables substituted for the columns: People(n, a) is such an example. This
term defines a valuation for all variables that appear in the columns; the
valuation associates the variables with the contents of the relation itself. In
our example the term People(n, a) defines the following valuation: (n, a) ∈
{(bob, 10), (john, 20), (amy, 10)}. Each Datalog relation is represented by an
edge in a circuit carrying a Z-set.

As Figure 3 shows, a relation in the head of a rule is compiled into the output
edge of the circuit corresponding to the rule, and that a RelationTerm in the
body of a rule is compiled into an input edge of the circuit corresponding to the
rule.

A relation that appears in the body of a rule and in the head of another
rule is compiled into an edge connecting the circuits representing the two rules.
This is in fact just a form of function composition.

(This rule does not apply directly for recursive rules; the translation for
recursive or mutually recursive rules (which define a relation in terms of itself),
is described in Section 8.1.1).

For example, for the following Datalog program structure, where R is used
within a body and within a separate head:

R(y) :- I(x), ....

O(y) :- ..., R(y).

and, given circuits CR implementing the first rule and CO implementing the
second rule:

I CR R

R CO O

the translation of the program with both rules is:

I CR CO O
R

This construction is repeated for all rules, translating a program with n
rules into n circuits connected to each other. If the rules are not recursive the
resulting circuit is acyclic.

14.2.3 Repeated rule heads (set union)

The same relation may appear in the head of multiple rules. In this case the
contents of the head relation is the set union of the values assigned by all heads.
Consider the following example, where I1 and I2 are rule bodies of arbitrary
complexity providing a valuation for variable v:

O(v) :- I1(v).

O(v) :- I2(v).
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The following circuit implements the Datalog program with both rules:
I1

I2

+ distinct O

Given two Z-sets a ∈ Z[I] and b ∈ Z[I] which are sets (i.e., isset(a) and
isset(b)), their set union can be computed as: ∪ : Z[I] × Z[I] → Z[I]. a ∪
b

def
= distinct(a+Z[I] b). The distinct application is necessary to provide the set

semantics of Datalog. We have isset(a)∧isset(b)⇒ isset(a∪b) and ispositive(a)∧
ispositive(b)⇒ ispositive(a ∪ b).

Consider a concrete example for the above program where the value of I1(v)
is v ∈ {bob 7→ 1, mike 7→ 1} and the value of I2(v) is v ∈ {bob 7→ 1, john 7→ 1}.
In terms of Z-sets we are performing the following addition:

v W
bob 1
mike 1

+
v W
bob 1
john 1

=

v W
bob 2
mike 1
john 1

It is apparent why the distinct operator is needed.

14.2.4 Projection

Given a valuation produced by the body of a rule, the head of the rule defines
the contents of a relation as the projection of the valuation on the variables
used in the head. For our example rule Names(n) :- People(n, a), the body
defines a valuation for (n, a), but the head uses only n. The projection of
the valuation (n, a) ∈ {(bob, 10), (john, 20), (amy, 10)} on the variable n is the
valuation n ∈ {bob, john, amy}. This defines the contents of the relation in the
head: Names = {bob, john, amy}.

Thus, in Datalog projection is used when some of the bound variables in the
body of a rule are not used in the head. We can assume without loss of generality
that a single variable is removed in a projection (by bundling multiple variables
in a single tuple-valued variable). Let us consider the following example, where
I stands for a rule body producing a valuation for (v, v1).

O(v) :- I(v, v1).

Here the type of the implementation of I is Z[A0×A1] (a Z-set of tuples with
two elements), while the type of the implementation of O is Z[A0]. In terms of
Z-sets, the projection of a Z-set i on A0 is defined as: π0(i)[t] =

∑
x∈i,x|0=t i[x],

where x|0 is first component of the tuple x. The multiplicity of a tuple in the
result is the sum of the multiplicities of all tuples that project to it.

As a concrete example of projection, consider the Z-set corresponding to
the People relation and it’s projection on the Age column. The projection is
πAge(People) = {10 7→ 1 + 1, 20 7→ 1}. Notice that in the projection the weight
of 10 is the sum of all weight of the tuples that have age 10, i.e., 2.

The circuit for such a rule is:
I π0 distinct O
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Note that ↑π is time-invariant, since π has the zero-preservation property.
We have isset(i)⇒ isset(πA(i)) and ispositive(π0).

14.2.5 Flatmap in DDlog

Recall that in DDlog the type of a column in a relation can be any of the types
supported by the language, including complex types, such as vectors, sets, or
even maps. For example, the following declaration indicates that the values in
relation I are sets of integers.

relation I(set: Set <integer >)

Flatmap is an operator that can expand the data in such a collection value
stored in a relation into the contents of a relation. Classic Datalog does not
support flatmaps. In DDlog Flatmap is an explicit keyword. It appears in rules
in the form of a FlatmapTerm in the grammar in Figure 2. The DDlog type
system ensures that the Flatmap operator can only be applied to an expression
whose type is a collection.

Here is an example of a program using Flatmap:

relation I(set: Set <integer >)

relation O(integer)

O(v) :- I(set), var v = Flatmap(set).

// O = union of all sets in I

Each element in relation I is a set of integers. The DDlog Flatmap operator
implements a restricted form of the functionality of the general mathematical
operator from above (unlike the mathematical flatmap, which is parameterized
by a function f , the DDlog Flatmap uses a hardwired function, essentially the
identity function.). The semantics is as follows: the Flatmap rule body term
extends the existing valuation with a new variable, v in this example. Flatmap’s
argument is an expression that depends on the current valuation (set in this
example) whose value is a collection. Let us assume that the contents of the I

relation is: {{1, 2}, {2, 3}}.
The valuation produced by the rule I(set), var v = Flatmap(set) is the

following: (set, v) ∈ {({1, 2}, 1), ({1, 2}, 2), ({2, 3}, 2), ({2, 3}, 3)}.
The circuit-based implementation of Flatmap, operating on Z-sets, can be

defined as follows:

I flatmap(e) distinct O

where the function e extends each tuple in a Z-set with the newly introduced
variable and each set value with a Cartesian product between the collection and
all it’s elements. For our example: e : Set<integer> → Z[Set<integer> ×
integer] defined by: e(set) =

∑
x∈set(set, x) 7→ 1.

The distinct operator is needed because some collections (e.g., vectors)
may contain duplicate values.

Proposition 14.1. ispositive(Flatmap).
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14.2.6 Map in DDlog

Given a function f : A → B, the mathematical map operator “lifts” the func-
tion f to operate on Z-sets: map(f) : Z[A] → Z[B]. map can be defined in

terms of flatmap: map(f)
def
= flatmap(x 7→ 1 · f(x)).

Classic Datalog does not support map computations, but many practical
implementations do. DDlog programs perform map computations when using
VariableDefinitionTerm in a rule, by using an expression to computing a value
for a new variable, that is added to a valuation, as in the following example:

O(v) :- I(x), var v = x + 1.

The VariableDefinitionTerm, var v = x + 1, extends the current valua-
tion, which contains just x, to include the newly defined variable v.

The circuit implementation of the previous rule is:

I map(e) O

The function e extends the current valuation tuple with a new column (corre-
sponding to v in the example) and evaluates the expression in the term (x + 1)
for each row of the valuation to compute the corresponding value for the new col-
umn. In our example, e : Z[integer]→ Z[integer×integer], e(x) = (x, x+1).

Note that ispositive(map(f)) for any function f . From the linearity of
flatmap it follows that map is linear as well. Moreover, the operator ↑map(f)
is time-invariant for any f .

14.2.7 Filtering

Filtering occurs in Datalog whenever a TermPredicate appears in the body of
a rule, in the guise of a Boolean expression, as in the following example:

relation Minors(n: string , a: integer)

Minors(n, a) :- People(n, a), a < 18.

(A predicate may not appear in the first position in the body of a rule.)
The predicate must only use variables in the current valuation. The produced
valuation contains the same variables as the source valuation. The value of the
valuation the set of tuples in the source valuation that satisfy the predicate.

Recall that the valuation of the term People(n, a) is (n, a) ∈ {(bob, 10),
(john, 20), (amy, 10)}. The valuation of the entire rule is the set of tuples (n, a)
for which the predicate a < 18 holds. That valuation is (n, a) ∈ {(bob, 10), (amy, 10)}.
Thus the contents of relation Minors is {(bob, 10), (amy, 10)}.

To compute on Z-sets, let us assume that we are filtering with a predicate
P : A→ B. We define the following function σP : A→ Z[A] as:

σP (x) =

{
1 · x if P (x)
0 otherwise

The filter of a Z-set is defined as filterP : Z[A] → Z[A] by filterP
def
=

flatmap(σP ). We have isset(i) ⇒ isset(filterP (i)) and ispositive(filterP ). Thus
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a distinct is not needed. As a consequence of the linearity of flatmap, we have
that filtering is also linear. The lifted version of filtering is also time-invariant.

The circuit for filtering with a predicate P can be implemented as:

I flatmap(σP ) O

14.2.8 Grouping

Classic Datalog does not support grouping. In DDlog grouping is the fundamen-
tal operator used for aggregation. Grouping is applied to a set and produces
a partition of that set into a set of collections. The type of a partition is a
built-in type in DDlog, called Group. The following example shows an example
of grouping in DDlog:

output relation O(v: Group <integer , string >)

// Groups with key integer and values Vector <string >

ByAge(g) :- People(n, a), var g = (n). group_by(a).

// Each g is the group of all names that have the same age

The general syntax of a GroupByTerm in Figure 2 is given by:
var g = (project-expression).group by(key-expression). In DDlog the
key-expression is restricted to be a tuple of variables in the current valuation.

The semantics of a GroupByTerm is given by the following algorithm:

1. We start with some input valuation.

2. The project-expression is evaluated for the input valuation V , adding
a new (anonymous) variable to the valuation, storing the result of the
project-expression for each row.

3. The resulting valuation is projected on a tuple of variables containing the
new anonymous variable and all variables that appear in key-expression.
The result of the projection is a new valuation P , a set (with no dupli-
cates). This valuation only includes the variables that appear in the projec-
tion and the key expression; all other variables are removed. This behavior
is unusual — this is the only DDlog operator that removes variables from
a valuation.

4. Finally, the data in the valuation is grouped by key, and the result is a
valuation that contains for the new variable a group.

As an example, let us evaluate the above DDlog rule according to these steps:

1. The term Persons(n, a) provides the following valuation:
(n, a) ∈ {(bob, 10), (john, 20), (amy, 10)}.

2. In our example project-expression is just n, whose value will be as-
signed to the anonymous variable. This creates a new valuation:
(n, a, anonymous) ∈ {(bob, 10, bob), (john, 20, john), (amy, 10, amy)}.
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3. The valuation is projected on a (the group key) and anonymous (the pro-
jection key), obtaining: (a, anonymous) ∈ {(10, bob), (20, john), (10, amy)}.
In this case there are no duplicates, but any duplicates would be removed.

4. The values in the valuation are grouped by their a value, providing a new
group for each value. The variable g is added to the resulting valuation.
The result is (a, g) ∈ {(10, [bob, amy]), (20, [john])}. Notice how the value
of g in the valuation is a collection, shown with square brackets.

Let us define this computation in terms of Z-sets. Consider an arbitrary type
of keys K, and a function that computes a key for a value k : I → K. Then
we define groupby(k) : Z[I]→ Z[I][K], as groupby(k)(i) =

∑
x∈i{k(x) 7→ 1 · x}.

Note that groupby always produces a set of Z-sets. The weight of each group is
always 1. Note that ispositive(groupby(k)). Also, ↑groupby(k) is time-invariant
for any function k, since groupby(k) has the zero-preservation property.

The implementation of the group by operator requires chaining the imple-
mentation of the projection and of groupby function just described: the result-
ing circuit is (using p as the translation of project-expression and k as the
translation of key-expression):

I map(p) πanon,k distinct groupby(k) O

14.2.9 Aggregation

Classic Datalog does not support aggregations but many practical implementa-
tions have extended Datalog with a construct equivalent with a composition of
groupby-aggregate.

Strictly speaking, DDlog does not support for aggregation – the only aggre-
gate supported is a group. However, since DDlog allows users to apply arbi-
trary functions to a Group object, traditional aggregation can be performed by
grouping and then applying a scalar-returning function using a map, as described
Section 14.2.6. Consider the following example, an extension of the example in
Section 14.2.8:

output relation NamesByAge(s: string)

NamesByAge(s) :- ByAge(g),

var s = g.key + ": " + g.toString ().

This example uses built-in functions g.key that obtains the key of a group,
and g.toString(), which converts the group contents to a string.

Formally, given a function a : Group<K,I>→ O, aggregation is just map(a)
applied to a set of groups. As a consequence lifted aggregation is time-invariant.

14.2.10 Cartesian products

Cartesian products in Datalog appear from the use of in a rule body of a
TermRelation where the relation arguments are all new variables (not already
defined in the input valuation). The Datalog semantics of Cartesian products
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is to produce a new valuation that includes all variables, and having as values
the Cartesian product of the values of the input valuation and the relation in
the term.

The following program shows an example Cartesian product:

O(v1, v2) :- I1(v1), I2(v2).

A Cartesian product is implemented as a circuit using the product operation
on Z-sets. For i1 ∈ Z[A] and i2 ∈ Z[B] we define i1 × i2 ∈ Z[A × B] by

(i1 × i2)(〈x, y〉) def
= i1[x] × i2[y].∀x ∈ i1, y ∈ i2. The circuit computing the

Cartesian product is given by:
I1

I2

↑× O

As an example, let us consider the product of the following two Z-sets:

x W
bob 1
mike 2

×
y W
bob 1
john -1

=

(x, y) W
(bob, bob) 1
(mike, bob) 2
(bob, john) -1
(mike, john) -2

Notice that isset(x) ∧ isset(y) ⇒ isset(x × y). The Cartesian product as
defined on Z-sets is a bilinear operator. Also, ↑× is time-invariant.

14.2.11 Joins

A join appears in a Datalog program by using a TermRelation that has as
arguments some variables that are already defined in the current valuation.
The following example shows a join: since the second relation reuses variable
v, which is already bound by the valuation, this is a join, and not a Cartesian
product:

O(x, y) :- I1(x, v), I2(v, y).

The semantics of a join can be modeled as a cartesian product followed
by a sequence of filters. This is achieved by using fresh variable names for
the arguments of each TermRelation, and adding predicates that require these
fresh variables to be equal to the bound variables they replace. For example,
the following program is equivalent to the one above.

O(x, y) :- I1(x, v), I2(v1, y), v = v1.

Since a join is a composition of a bilinear (the Cartesian product) and a linear
(filtering) operator, it is also a bilinear operator, and thus its lifted version is
time-invariant.

In practice joins are very important computationally, and they are imple-
mented by a custom operator on Z-sets denoted by ./.

The circuit computing the join product is given by:
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I1

I2

./ O

14.2.12 Set intersection

Set intersection in Datalog is just a particular case of join where a TermRelation

uses all the variables defined in the current valuation as arguments. In the
following example relation O is the intersection of relations I1 and I2:

O(v) = I1(v), I2(v).

The join implementation using circuits immediately applies to set intersec-
tions. It follows that set intersection is a bilinear operator, and thus time-
invariant when lifted.

14.2.13 Negation

We only support Datalog programs with stratified negation. See [5] for a precise
definition. Negation in a Datalog program is introduced syntactically by a
NegatedTerm from the grammar in Figure 2. A negated term cannot appear
first in a rule body. All variables that appear in the negated term must have
been already defined by previous terms in the body.

With these syntactic constraints the are two different meanings to negation:

• If the negated term uses all variables already in the valuation, it is modeled
as a set difference.

• If the negated term uses a subset of all the variables in the existing valu-
ation, it is modeled as an antijoin.

We describe each of these two cases.

14.2.14 Set difference

If the NegatedTerm contains as arguments all variables in the current valuation,
the meaning of negation is just set difference: the resulting valuation will exclude
all tuples from the negated relation.

For example, consider the rule:

relation Major(name: string , age: integer)

Major(n, a) :- People(n, a), not Minor(n, a).

The valuation computed by the rule’s body is {(bob, 10), (john, 20), (amy, 10)}\
{(bob, 10), (amy, 10)} = {(john, 20)}.

In terms of Z-sets, let us consider the following program:

O(v) :- I1(v), not I2(v).
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We define the set difference on Z-sets as follows: \ : Z[I] × Z[I] → Z[I],
where i1 \ i2 = distinct(i1− i2). Note that we have ∀i1, i2, ispositive(i1 \ i2) due
to the application of the distinct operator.

The circuit computing the valuation of the body of this rule is:
I1

I2 −
+ distinct O

This whole circuit is time-invariant, since it composed only of time-invariant
operators.

14.2.15 Antijoin

Antijoin is the semantics of a Datalog NegatedTerm that uses a relation which
does not use some of the variables in the current valuation. Consider the fol-
lowing program:

O(v) :- I1(v, z), not I2(v).

The semantics of such a rule can be defined in terms of joins and set differ-
ence. This rule is equivalent with the following pair of rules:

C(v, z) :- I1(v, z), I2(v).

O(v) :- I1(v, z), not C(v, z).

This transformation reduces an antijoin to a join (using all variables in the
current valuation), followed by a set difference. The translation of these rules
is covered by Sections 14.2.11 and Section 14.2.14. In terms of circuits we can
just build the circuit for the pair of rules:

I1

I2

./ −
+ distinct O

14.3 Streaming Differential Datalog

In this section we have shown how Given a Datalog (or SQL) query Q, can be
converted into a circuit CQ that computes the same input-output function as
Q.

i CQ o

We can perform two simple transformations to this circuit: we can lift it
to convert it into a streaming program, and then we can incrementalize it, to
convert it into a differential program.

14.3.1 Streaming Datalog

Given the circuit CQ : A→ B, We can lift it to compute on streams of relations.
↑CQ : SA → SB interacts with its environment in “epochs,” corresponding to
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the time dimension of the streams. In each epoch the circuit receives a new set
of values for the inputs relations and it provides the corresponding values for
the output relations.

i ↑CQ o

14.3.2 Streaming Differential Datalog

Furthermore, we can apply the ·∆ operator to the streaming circuit ↑CQ, con-

verting it into an incremental streaming circuit: (↑CQ)
∆

: SA → SB .

i I ↑CQ D o

This is a differential streaming version of the circuit CQ. This circuit inter-
acts with its environment in “ephochs,” corresponding to the time dimension of
the streams. In each epoch the circuit receives a new set of changes to the inputs
relations and it provides the corresponding change for the output relations.

This is in essence the service provided by the DDlog compiler: given a query
Q it provides a streaming implementation of ↑CQ

∆. However, the DDlog run-
time provides some additional services, described in the next section.

15 Implementations

15.1 DBSP Rust library

We have built an implementation of DBSP as part of an open-source project with
an MIT license: https://github.com/vmware/database-stream-processor.
The implementation consists of a Rust library and a runtime. The library pro-
vides APIs for basic algebraic data types: such as groups, finite maps, Z-set,
indexed Z-set. A separate circuit construction API allows users to create DBSP
circuits by placing operator nodes (corresponding to boxes in our diagrams) and
connecting them with streams, which correspond to the arrows in our diagrams.
The library provides pre-built generic operators for integration, differentiation,
delay, nested integration and differentiation, and a rich library of Z-set basic
incremental operators: corresponding to plus, negation, grouping, joining, ag-
gregation, distinct , flatmap, window aggregates, etc.

For iterative computations the library provides the δ0 operator and an oper-
ator that approximates

∫
by terminating iteration of a loop at a user-specified

condition (usually the condition is the requirement for a zero to appear in a
specified stream). The low level library allows users to construct incremental
circuits manually by stitching together incremental versions of various primitive
operators.

The library has also support for multicore execution of Z-set operators (using
a natural sharding strategy), and a variety of adaptors for external data sources
(e.g., Kafka, CSV files, etc). The library can also spill internal operator state
to persistent storage.
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15.2 SQL compiler

We have also built a SQL to DBSP compiler, which can translate standard SQL
queries into DBSP circuits. The compiler implements Algorithm 6.4, which
can be used to generate the streaming version of any expressible SQL query.
The compiler is also an open-source project https://github.com/vmware/

sql-to-dbsp-compiler with an MIT license. The compiler front-end parser
and optimizer is based on the Apache Calcite [11] infrastructure. The project
is mature enough to pass essentially all 7 million SQL Logic Tests [1]. The
compiler handles all aspects of SQL, including NULLs, ternary logic, grouping,
aggregation, multiset queries, etc.

15.3 Formal verification

As a third implementation, we have formalized and verified all the definitions,
lemmas, propositions, theorems, and examples in this paper using the Lean
theorem prover; we make these proofs available at . This amounted to roughly MIHAI: Tej?

5K lines of Lean code.

15.4 Additional Implementation Observations

15.4.1 Checkpoint/restore

DBSP programs are stateful streaming systems. Fault-tolerance and migration
for such programs requires state migration. We claim that it is sufficient to
checkpoint and restore the ”contents” of all z−1 operator in order to migrate
the state of a Ddlog computation.

15.4.2 Maintaining a database

DBSP is not a database, it is just a streaming view maintenance system. In
particular, DBSP will not maintain more state than absolutely necessary to
compute the changes to the views. There is no way to find out whether a
specific value exists at a specific time moment within a DBSP relation. However,
a simple extension to DBSP runtime can be made to provide a view query API:
essentially all relations that may be queried have to be maintained internally in
an integrated form as well. The system can then provide an API to enumerate
or query a view about element membership between input updates.

15.4.3 Materialized views

An incremental view maintenance system is not a database – it only computes
changes to views when given changes to tables. However, it can be integrated
with a database, by providing capabilities for querying both tables and views.
An input table is just the integral of all the changes to the table. This makes
possible building a system that is both stateful (like a database) and streaming
(like an incremental view maintenance system).

86

https://github.com/vmware/sql-to-dbsp-compiler
https://github.com/vmware/sql-to-dbsp-compiler


15.4.4 Maintaining input invariants

For relational query systems there is however an important caveat: the proofs
about the correctness of the CQ implementing the same semantics as Q all
require some preconditions on the circuit inputs. In particular, the semantics
of Q is only defined for sets. In order for CQ to faithfully emulate the behavior
of Q we must enforce the invariant that the input relations are in fact sets.

However, the differential streaming version of the circuits accepts an arbi-
trary stream of changes to the input relations. Not all such streams define input
relations that are sets! For example, consider an input stream where the first
element removes a tuple from an input relation. The resulting Z-set does not
represent a set, and thus the proof of correctness does not hold. This problem
has been well understood in the context of the relational algebra: it is the same
as the notion of positivity from [23].

We propose three different solutions to this problem, in increasing degrees
of complexity.

Assume that the environment is well-behaved The simplest solution is
to do nothing and assume that at any point in time the integral of the input
stream of changes i is a set: ∀t ∈ N.isset(I (i)[t]). This may be a reasonable
assumption if the changes come from a controlled medium, e.g., a traditional
database, where they represent legal database changes.

Normalize input relations to sets In order to enforce that the input rela-
tions are always sets it is sufficient to apply a distinct operator after integration.

i I distinct ↑CQ D o

The semantics of the resulting circuit is identical to the semantics of ↑CQ
∆

for well-behaved input streams. For non-well behaved input streams one can
give a reasonable definition: a change is applied to the input relations, and then
non-relations are normalized into relations. Removing a non-existent element is
a no-op, and adding twice an element is the same as adding it once.

Use a “change manager” In this solution we interpose a separate soft-
ware component between the environment and the circuit. Let us call this a
“change manager” (CM). The CM is responsible for accepting commands from
the environment that perform updates on the input relations, validating them,
and building incrementally an input change, by computing the effect of the
commands. The CM needs to maintain enough internal state to validate all
commands; this will most likely entail maintaining the full contents of the input
tables. Note that the input tables can be computed as the I of all input deltas
ever applied. Once all commands producing a change have been accepted, the
environment can apply the produced input change atomically, and obtain from
the circuit the corresponding output changes.
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Env CM ↑CQ
∆ o

i

Part III

Appendixes

A Z-transform and stream convolutions

Definition A.1. The Z-transform of a stream, as traditionally defined in
signal processing, is a function that associates with any stream over a group a

formal power series in the indeterminate z: Z : SA → AJzK defined as Z(s)
def
=∑

t≥0 s[t]z
−t.

For example, the Z-transform of the id stream is the power series 0 + z−1 +
z−2 + z−3 + . . ..

Definition A.2. Let (R,+, ·, 0, 1) be a commutative ring. The Cauchy prod-
uct (also called discrete convolution) of two streams ∗ : SR×SR → SR is defined
as:

(a ∗ b)[t] =

t∑
i=0

a[i] · b[t− i]

For example, the convolution of the id stream with itself is the stream id ∗ id
containing the sequence of values 0, (0 · 1 + 1 · 0), (0 · 2 + 1 · 1 + 2 · 0), . . . =
0, 0, 1, 4, 8, . . ..

Proposition A.3. The structure (SR,+, ∗, 0, 1) is also a commutative ring.
This ring is isomorphic to the ring of formal power series in one indeterminate
RJzK with coefficients from R.

Sometimes it is more convenient to use the formal power series notation.
Notice that we have z−1(s) = z−1 ∗ s, justifying the traditional notation for
the delay operator z−1. It follows that the differentiation of a stream s is
D(s) = (1− z−1) ∗ s.

Moreover, the equation that defines the integration of a stream s, ξ =
z−1(ξ) + s is equivalent to ξ = z−1 ∗ ξ + s and then to (1 − z−1) ∗ ξ = s.
Since 1− z−1 has multiplicative inverse

(1− z−1)−1 = 1 + z−1 + z−2 + z−3 + · · ·

we can express the integration operator by I (s) = (1−z−1)−1 ∗s. Theorem 3.30
now follows by algebraic manipulations in the ring of formal power series. Simi-
larly for the time-invariance and linearity properties of D and I . Even causality
can be treated algebraically, once we note that, like addition, convolution is
causal.
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Observation As shown above, there are two proof styles for equations over
streams: one is (usually) by induction over the time dimension, and the other
one is equational, by operating with polynomials over z. The theory of digital
signal processing posits that these two proof styles give the same results.
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