
Noname manuscript No.
(will be inserted by the editor)

DBSP: Automatic Incremental View Maintenance for
Rich Query Languages

Mihai Budiu · Leonid Ryzhyk · Gerd Zellweger · Ben Pfaff · Lalith

Suresh · Simon Kassing · Abhinav Gyawali · Matei Budiu · Tej

Chajed · Frank McSherry · Val Tannen

the date of receipt and acceptance should be inserted later

Abstract Incremental view maintenance (IVM) has

long been a central problem in database theory and

practice. Many solutions have been proposed for re-

stricted classes of database languages (such as the rela-

tional algebra or Datalog), restricted classes of queries,

and restricted classes of database changes. In this paper

we give a general, heuristic-free solution to this prob-

lem in 4 steps: (1) we describe a simple but expressive

language called DBSP for describing computations over

data streams; (2) we give a new mathematical defini-

tion of IVM using DBSP; (3) we give an algorithm for

converting any DBSP program into an incremental pro-

gram; this algorithm reduces the problem of incremen-

talizing a complex query to the problem of incremental-

izing the primitive operations that compose the query.

Finally, (4) we show that practical database query lan-

guages, such as SQL and Datalog, can be directly imple-

mented on top of DBSP, using primitives that have ef-

ficient incremental implementations. As a consequence,

we obtain a general recipe for efficient IVM for essen-

tially arbitrary queries written in all these languages.

1 Introduction

This paper is an extended version of a VLDB 2023

publication [26], adopting the notations from [27]. The

major changes are: adding new incremental program
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examples (§5.3, §6.3), an expanded discussion of imple-

menting SQL with its “standard” semantics §7.3, an
extended implementation section §8, and a preliminary

experimental evaluation §9. This paper includes only a

few short mathematical proofs; all the proofs can be

found in an extended technical report [28]; the proofs

have also been formalized and verified in the Lean proof

assistant [32].

1.1 Problem and Solution Overview

The IVM problem can be stated as follows: we are given

a database DB and a view V , described by a query Q.

The goal of IVM is to keep the contents of V up-to-date

in response to changes of the database.

Consider the following SQL statement:

CREATE VIEW V AS

SELECT * FROM T WHERE Age >= 10

In this example the query Q defining the view V is

the SELECT statement. The view V always contains all

the rows of table T whose value for the column Age is

greater than or equal to 10.

In general a query is a function applied to the con-

tents of a database: V = Q(DB). A naive solution re-

executes query Q every time the database changes, as

illustrated in the following diagram. Time is the hori-

zontal axis; the horizontal arrows labeled with ∆ depict

changes to the database. The “up” arrows show the re-

evaluation of Q for each database snapshot.

Time

ΔDB[1] ΔDB[2] ΔDB[3]

𝑄 𝑄 𝑄 𝑄

Changes (Δ)

V[1] V[2] V[3] V[4]

DB[1] DB[2] DB[3] DB[4]
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The naive solution is expensive. An ideal algorithm

would compute only changes to the view ∆V , doing

work O(|∆DB|) (after computing the first version of

the view).

𝑄 𝑄Δ 𝑄Δ 𝑄Δ

ΔDB[1] ΔDB[2] ΔDB[3]ΔDB[0]

ΔV[1] ΔV[2] ΔV[3]

V[1] V[2] V[3] V[4]

DB[1] DB[2] DB[3] DB[4]

We call Q∆ the incremental version of Q. For an

arbitrary queryQ one can show that there is no solution

where Q∆ is a (pure) function of ∆DB (only restricted

classes of queries have such solutions).

In this paper we propose a new way to define Q∆,

as a form of computation on streams. Our model is in-

spired by Digital Signal Processing DSP [86], applied

to databases, hence the name DBSP.

Q∆ can be significantly more efficient than the naive

solution. As is the case for traditional database queries,

the performance of Q∆ depends both on the query Q

but also on the actual data that the query is applied to.

Informally, Q∆ built by our algorithm, is faster than Q

by a factor of O(|DB|/|∆DB|). In practice this may be

an improvement of several orders of magnitude.

Instead of treating the database as a large, changing

object, we model it as a sequence or stream of database

snapshots, shown as DB[1], DB[2], . . . in the previous

diagrams. Similarly, consecutive view snapshots form a

stream. DBSP is a simple programming language com-

puting on streams; inputs and outputs are streams of

arbitrary values.

The DBSP language has only 4 operators. However,

it can express a rich set of computations on streams, in-

cluding repeated computations (similar to the repeated

queries Q above), recursive computations that com-

pute fixed points (like Datalog programs), more gen-

eral streaming computations, and incremental compu-

tations (defined shortly).

The central result of this paper is Algorithm 1 in §4.
The input to the algorithm is a DBSP program that

computes on a stream of data; the algorithm mechani-

cally transforms it into an incremental DBSP program

that computes on a stream of changes.

DBSP is not tied to databases in any way; it is in

fact a Turing-complete language that can be used for

many other purposes. But it works particularly well in

the area of databases, for two reasons:

– DBSP operates on values from a commutative group.

Databases can be modeled as a commutative group.

– DBSP reduces the problem of incrementalizing a

complex program to the problem of incrementalizing

each primitive operation that appears in the program.

For databases there are known efficient incremental im-

plementations for all primitive operations.

1.2 Core abstractions

1.2.1 Circuits

In this paper we use circuit diagrams to depict pro-

grams. In a circuit a rectangle represents a function,

and an arrow represents an input or output value. The

following diagram shows a function f consuming two

inputs i (input 0) and j (input 1) and producing one

output o = f(i, j):

f
0

1

i
j

o

Most of the functions we deal with are commutative,

so we omit input labels, showing the circuit above as:

i
j

f o

Functions, and their circuits, can be composed, as

in the following example showing o = g(s)+ (f(s)× s):

s

f × +

g

o

1.2.2 Streams

The core notion of DBSP is the stream. Given a set

A, a stream of values from A is an infinite sequence of

values from A. SA denotes the set of all streams with

values from A. We write s[t] for the t-th element of the

stream s. Think of t as the “time” and of s[t] ∈ A as the

value of the stream s “at time” t. We show streams as

a sequence of boxes, with time from right to left : e.g.,

the stream id[t]
def
= t is:

· · · 3 2 1 0

←−−−−−−−−−−−−−
time

A stream operator is a function that computes on

streams and produces streams. We use “operator” for

streams, and “function” for computations on “scalar”

values. In circuits we use arrows with a double head to

depict streams. The following diagram shows a stream

operator T consuming two input streams s0 and s1,

producing one output stream s; the difference from the

previous figure is in the use of double arrows.

T
0

1

s0
s1

s

We write s = T (s0, s1).

Given a function f : A → B, we define a stream

operator ↑f : SA → SB (read as “f lifted”) by applying

function f to each input value independently:
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· · · d c b a ↑f · · · f(d) f(c) f(b) f(a)

1.3 Databases as streams

We generally think of streams as sequences of “small”

values, such as insertions or deletions in a database.

However, we also treat the whole database as a stream

of database snapshots. We model a database as a stream

DB. Time is not wall-clock time, but counts the trans-

actions executed. Since transactions are linearizable,

they have a total order. DB[t] is the snapshot of the

database contents after t transactions have been ap-

plied. We use this notation in the diagrams in §1.1.
Database transactions also form a stream ∆DB,

which is a stream of changes, or deltas, that are applied

to the database. The values of this stream are defined

by (∆DB)[t] = DB[t] − DB[t − 1], where “−” stands

for the difference between two databases, a notion that

we will soon make more precise. The ∆DB stream can

be produced from the DB stream by the stream dif-

ferentiation operator D; this operator produces as its

output the stream of changes from its input stream; we

have thus D(DB) = ∆DB.

Conversely, the database snapshot at time t is the

cumulative result of applying all transactions up to t:

DB[t] = ∆DB[0]+∆DB[1]+. . .+∆DB[t]. The stream

operator I is defined to produce each output by adding

up all previous inputs. We call I stream integration, the

inverse of differentiation. The following diagram shows

the relationship between the streams ∆DB and DB:

∆DB I DB D ∆DB

In this model a database view is also a stream. Sup-

pose query Q defining a view V . For each snapshot of

the database stream we have a snapshot of the view:

V [t] = Q(DB[t]). A view is thus just a lifted query:

V = (↑Q)(DB).

Armed with these basic definitions, we can precisely

define IVM. A maintenance algorithm computes the

changes to the view given the changes to the database.

Given a query Q, a key contribution of this paper is the

definition of its incremental version Q∆, using stream

integration and differentiation, depicted graphically as:

∆DB I ↑Q D ∆V
DB V

Q∆

Mathematically: Q∆ = D◦(↑Q)◦I. The incremental

version of a query Q is a streaming operator Q∆ which

computes directly on changes and produces changes.

The incremental version of a query is thus always well-

defined. The above definition gives us one way to com-

pute a query incrementally, but applying it naively pro-

duces an inefficient execution, since it reconstructs the

database at each step. It is in fact as bad as the naive

solution. In §3 we show how we can optimize the im-

plementation of Q∆. The key property is that the we

can “push” the .∆ operator “down” in a query plan:

(Q1 ◦Q2)
∆
= Q1

∆ ◦Q2
∆.

Armed with this general theory of incremental com-

putation, in §4 we show how to model relational queries

in DBSP. This immediately gives us a general algorithm

to compute the incremental version of any relational

query. These results were previously known, but they

are cleanly modeled by DBSP. We show how programs

containing recursion can be implemented §5 and incre-

mentalized §6 in DBSP. For example, given an imple-

mentation of transitive closure in the natural recursive

way, our algorithm produces a program that efficiently

maintains the transitive closure of a graph as nodes and

edges are added and deleted.

1.4 Contributions

This work makes the following contributions:

1. We introduce DBSP §2, a simple but expressive lan-

guage for streaming computation. DBSP gives an el-

egant formal foundation unifying the manipulation

of streaming and incremental computations.

2. We describe an algorithm (Algorithm 1, §4.3) for in-
crementalizing any streaming computation expressed

in DBSP that handles arbitrary insertions and dele-

tions from any of the data sources.

3. We describe how DBSP can model various classes of

practical languages: the relational algebra §4, Dat-

alog §5, and SQL §7.3.
4. We provide the first general and machine-checked

theory of IVM. All the theoretical results in this

paper have been checked [32] using the Lean proof

assistant [39].

5. We describe a practical open-source implementation

of this theory as a runtime and a SQL compiler §8.
6. We give a preliminary evaluation of the performance

of our implementation §9.

2 Stream computations

The core notion of our theory of IVM is the stream.

In this section we introduce streams as infinite sequences

of values, and define computations on streams.

N is the set of natural numbers (from 0), B is the

set of Booleans, Z is the set of integers, and R is the

set of real numbers.

2.1 Streams and stream operators

Definition 1 (stream) Given a set A, a stream of

values from A, or an A-stream, is a function N → A.

SA
def
= {s | s : N→ A} is the set of all A-streams.
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When s ∈ SA and t ∈ N we write s[t] for the t-th

element of the stream s.

Definition 2 (stream operator) A stream opera-

tor is a function T : SA0
× · · · × SAn−1

→ SB .

Definition 3 (lifting) Given a (scalar) function f :

A → B, we define a stream operator ↑f : SA → SB
by lifting the function f pointwise in time: (↑f)(s) def

=

f ◦ s. Equivalently, ((↑f)(s))[t] def= f(s[t]). This extends

to functions of multiple arguments.

For example, (↑(λx.(2x)))(id) = · · · 6 4 2 0 .

Proposition 1 (distributivity) Lifting distributes over

function composition: ↑(f ◦ g) = (↑f) ◦ (↑g).

We say that two DBSP programs are equivalent if

they compute the same input-output function on streams.

We use the symbol ∼= to indicate that two circuits are

equivalent. For example, Proposition 1 states the fol-

lowing circuit equivalence:
s ↑g ↑f o ∼= s ↑(f ◦ g) o

2.2 Streams over Abelian groups

For the rest of the technical development we require the

set of values A of a stream SA to form a commutative

group (A,+, 0A,−). The plus defines what it means to

add new data, while the minus allows us to compute

differences (deltas). We show later that this restriction

is not a problem for using DBSP with relational data.

2.2.1 Delays and time-invariance

Definition 4 (delay) The delay operator1 z−1 pro-

duces an output stream by delaying its input by one

step: z−1
A : SA → SA:

z−1
A (s)[t]

def
=

{
0A when t = 0

s[t− 1] when t ≥ 1

We often omit the type parameter A, and write just

z−1. For example, z−1(id) = · · · 2 1 0 0 .

Definition 5 (time invariance) A stream operator

S : SA → SB is time-invariant (TI) if S(z−1
A (s)) =

z−1
B (S(s)) for all s ∈ SA; in other words, if the following

two circuits are equivalent:

s S z−1 o ∼= s z−1 S o

The output of a TI operator only depends on its in-

put, but never on the “logical clock” value. For example

the operator S(s)[t] = s[t] + t is not TI. The composi-

tion of TI operators of any number of inputs is TI. The

delay operator z−1 is TI. DBSP only uses TI operators.

1 The name z−1 comes from the DSP literature, and is
related to the z-transform [86].

2.2.2 Causal and strict operators

The definitions in this section are used to argue that

some circuits with cycles are well-defined.

Definition 6 (causality) A stream operator

S : SA → SB is causal when ∀s, s′ ∈ SA, and ∀t ∈ N
we have: (∀i ≤ t . s[i] = s′[i])⇒ S(s)[t] = S(s′)[t].

In other words, the output value at time t can only

depend on input values from times t′ ≤ t (they cannot

“look” into the future). Operators produced by lifting

are causal, and z−1 is causal. The composition of causal

operators is causal. DBSP only uses causal operators.

Definition 7 (strictness) A stream operator

F : SA → SB is strict if ∀s, s′ ∈ SA,∀t ∈ N we have:

(∀i < t . s[i] = s′[i])⇒ F (s)[t] = F (s′)[t].

In other words, the t-th output of F (s) can depend

only on “past” values of the input s, between 0 and

t − 1. In particular, F (s)[0] = 0B is the same for all

s ∈ SA. Strict operators are causal, but in addition,

the current output can only depend on previous inputs.

Lifted operators in general are not strict. z−1 is strict.

Strict operators can compute their k-th output before

having received the corresponding k-th input.

Proposition 2 For a strict F : SA → SA the equation

α = F (α) has a unique solution α ∈ SA, denoted by

fixα.F (α).

Thus every strict operator from a set to itself has

a unique fixed point. The simple proof relies on strong

induction, showing that the solution α[t] depends only

on the values of α prior to t. As an example, consider

F = z−1. The base of the induction is: α[0] = z−1[0] =

0, and the inductive step gives us α[t] = z−1(α)[t] =

α[t− 1], thus ∀t.α[t] = 0.

Consider a circuit with a strict “feedback” edge F :

s T α

F

This circuit is a well-defined function on streams,

because the F operator can produce an output before

having received the corresponding input, enabling T

to compute the first output immediately. This fact is

mathematically shown by the following Lemma:

Lemma 1 If F : SB → SB is strict and T : SA×SB →
SB is causal, the operator Q(s) = fixα.T (s, F (α)) is

well-defined and causal. If, moreover, F and T are TI

then so is Q.
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We will use circuits with such feedback loops exten-

sively; in particular, the integrator below from Propo-

sition 6 has this structure. Such circuits are similar to

sequential logic circuits in digital design [3], where the

z−1 operator has the role of a latch.

Most DBSP computations are built using just lifted

functions and delays. We add two more operators in §6
to support recursive functions. But first let’s build some

very useful circuits.

2.3 Integration and differentiation

Remember that we require the elements of a stream

to come from an Abelian group A. Streams themselves

form an Abelian group:

Proposition 3 The structure (SA,+, 0,−), obtained by

lifting the + and unary − operations of A, is an Abelian

group. 0 is the stream with all values 0A.

To simplify the notation, we write a+ b for streams a, b

instead of a(↑+)b; we also write −a instead of (↑−)a.
Stream addition and negation are causal, TI operators.

Definition 8 (linear) Given Abelian groups A and B

we call a stream operator S : SA → SB linear if it is a

group homomorphism, that is, S(a + b) = S(a) + S(b)

(and therefore S(0) = 0 and S(−a) = −S(a)).

We write LTI for “linear and TI”. Given a linear

function f : A → B, the stream operator ↑f is LTI.

z−1 is also LTI.

Definition 9 (bilinear) A function of two arguments

f : A×B → C where A,B,C are groups, is bilinear if it

is linear separately in each argument (i.e., it distributes
over addition): ∀a, b, c, d . f(a+ b, c) = f(a, c)+ f(b, c),

and f(a, c+ d) = f(a, c) + f(c, d).

This definition extends to stream operators. The

lifting of a bilinear function f is a bilinear stream op-

erator ↑f . An example is lifted multiplication: f : SN×
SN → SN, f(a, b)[t] = a[t] · b[t].

Definition 10 (differentiation) The differentiation

operator DSA
: SA → SA is: D(s) def

= s− z−1(s).

s + D(s)

z−1 −

We generally omit the type, and write just D. D(s)[t] =
s[t]− s[t− 1] if t > 0. If s is a stream, then D(s) is the
stream of changes of s.

As an example:

D( · · · 1 2 1 0 ) =

· · · 1 2 1 0 − z−1( · · · 1 2 1 0 ) =

· · · 1 2 1 0 − · · · 2 1 0 0 = · · · −1 1 1 0

Proposition 4 D is causal and LTI.

The “feedback loop” built from linear operator and

a delay is linear, as shown by the following

Proposition 5 If S is causal and LTI, the operator

Q(s) = fixα.S(s+ z−1(α)) is well-defined and LTI:

s + S α

z−1

The proposition is a consequence of Lemma 1.

The integration operator “reconstitutes” a stream

from its changes:

Definition 11 (integration) The integration op-

erator ISA
: SA → SA is I(s) def

= fixα.(s+ z−1(α)):

s + I(s) = o

z−1

We also omit the type, and write just I. This is the

circuit from Proposition 5, with S the identity function.

Proposition 6 I(s) is the discrete (indefinite) integral
applied to the stream s: I(s)[t] =

∑
i≤t s[i].

Proof Using the notation o = I(s) to make formulas

more readable, we can see the contents of stream o is

produced step by step.

o[0] = s[0] + (z−1(o))[0] = s[0] + 0 = s[0]

o[1] = s[1] + (z−1(o))[1] = s[1] + o[0] = s[1] + s[0]

. . .

o[t] = s[t] + (z−1(o))[t] = s[t] + o[t− 1].⊓⊔

Proposition 7 I is causal and LTI.

Theorem 1 (inversion) I and D are inverses of each

other: ∀s . I(D(s)) = D(I(s)) = s.

s I D o ∼= s o ∼= s D I o

3 Incremental view maintenance

Here we define IVM and analyze its properties.

Definition 12 Given a unary stream operatorQ : SA →
SB we define the incremental version of Q as:

Q∆ def
= D ◦Q ◦ I. (3.1)

Q∆ has the same “type” as Q: Q∆ : SA → SB . For an
operator with multiple inputs we define the incremental

version by applying I to each input independently: e.g.,

if T : SA×SB → SC then T∆(a, b)
def
= D(T (I(a), I(b))).
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∆s I Q D ∆o
s o

Q∆

If Q(s) = o is a streaming operator, then Q∆ operates

on streams of changes: Q∆(∆s) = ∆o.

Notice that our definition of incremental computa-

tion is meaningful only for streaming computations; this

is in contrast to classic definitions, e.g. [53] which con-

sider only one change. Generalizing the definition to op-

erate on streams gives us additional power, especially

when operating with recursive queries.

The following is one of our central results:

Proposition 8 (Properties of the incremental version):

inversion: The function f(Q) = Q∆ = D ◦ Q ◦ I is

bijective; it’s inverse is f−1(Q) = I ◦Q ◦ D.
push/pull: Q ◦ I = I ◦Q∆; D ◦Q = Q∆ ◦ D
chain: (Q1 ◦Q2)

∆
= Q1

∆ ◦Q2
∆

add: (Q1 +Q2)
∆
= Q1

∆ +Q2
∆

cycle: (λs.fixα.T (s, z−1(α)))
∆
= λs.fixα.T∆(s, z−1(α))

Here is the proof of the chain rule, which states

that (Q1 ◦Q2)
∆
= Q1

∆ ◦Q2
∆.

∆i I Q1 Q2 D ∆o ∼=
∆i I Q1 D I Q2 D ∆o ∼=

∆i Q1
∆ Q2

∆ ∆o

In other words, to incrementalize a composite query

you can incrementalize each sub-query indepen-

dently. This gives us a simple, syntax-directed, deter-

ministic recipe for computing the incremental version

of an arbitrarily complex query.

The following three circuits are equivalent; the equiv-

alence between the first and the last is the cycle rule:
∆s I T D ∆o

z−1
∼=

∆s I

D I

T D ∆o

Iz−1

∼=
∆s T∆ ∆o

z−1

In other words, the incremental version of a feedback

loop around a query is just the feedback loop with the

incremental query for its body. This result will be used

to implement recursive queries in §5.
To execute incremental queries efficiently, we want

to compute directly on streams of changes, without in-

tegrating them. The following theorems show how this

can be done for linear and bi-linear operators:

Theorem 2 (Linear) If Q is LTI, we have Q∆ = Q.

This implies that stream operators +, −, I, D, and
z−1 are identical to their incremental versions.

Theorem 3 (Bilinear) Using the infix notation: if ×
is bilinear TI, we have:

(∆a×∆b)
∆
=

(∆a×∆b + z−1(I(∆a))×∆b + ∆a× z−1(I(∆b)) =

∆a×∆b+ z−1(a)×∆b+∆a× z−1(b)

In pictures:

∆a I

∆b I

× D ∆o ∼=

∆a

∆b

I

×

I

z−1

z−1

×

×

+ ∆o

This equation is the well-known formula for join

delta queries [65] in terms of streaming computations.

4 IVM for the Relational Algebra

Results in §2 and §3 apply to streams of arbitrary

group values. In this section we apply these results to

IVM for relational databases. As explained in the in-

troduction, our goal is to efficiently compute the incre-

mental version of a relational query Q defining a view.

However, we face a technical problem: the I and

D operators were defined on Abelian groups, and re-

lational databases in general are not Abelian groups,

since they operate on sets. Fortunately, there is a well-

known tool in the database literature which converts set

operations into group operations by using Z-sets (also

called z-relations [48]) to represent sets.

We start by defining the Z-sets group, and then we

review how relational queries are converted into DBSP

circuits over Z-sets. We show in §4.2 that this transla-
tion is efficiently incrementalizable because many prim-

itive relational operations use LTI Z-set operators.

4.1 Z-sets as an Abelian group

A Z-set is a database table where each row has an as-

sociated weight, possibly negative. Given a set A, we

define Z-sets over A as functions with finite support

from A to Z. These are functions f : A → Z where

f(x) ̸= 0 for at most a finite number of values x ∈ A.

We also write Z[A] for the type of Z-sets with elements

from A. Values in Z[A] can be thought of as key-value

maps with keys in A and values in Z, justifying the

array indexing notation. If m ∈ Z[A] we write m[a]

instead of m(a), again using an indexing notation.

A particular Z-set m ∈ Z[A] can be denoted by enu-

merating its elements that have non-zero weights and

their corresponding weights: m = {x1 7→ w1, . . . , xn 7→
wn}. We call wi ∈ Z the weight of xi ∈ A. Weights

can be negative. We say that x ∈ m iff m[x] ̸= 0.
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The following table shows an example Z-set with

three rows, let’s call it R. The first row has value joe

and weight 1. We never show rows with weight 0.

Row Weight

joe 1

mary 2

anne -1

R has three elements in its domain, joe with weight

1 (so R[joe] = 1), mary with weight 2, and anne with

weight −1. So joe ∈ R, mary ∈ R, and anne ∈ R.

Since Z is an Abelian ring, Z[A] is also an Abelian

ring, and thus a group (Z[A],+Z[A], 0Z[A],−ZA). Addi-

tion and subtraction are defined pointwise: ∀x ∈ A.

(f +Z[A] g)(x) = f(x) + g(x). The 0 element of Z[A] is

the function 0Z[A] defined by 0Z[A](x) = 0.∀x ∈ A. For

example, R + R = {joe 7→ 2, mary 7→ 4, anne 7→ −2}.
Since Z-sets form a group, all results from §2 apply to

streams over Z-sets.
Z-sets generalize sets and bags. A set with elements

from A can be represented as a Z-set by associating a

weight of 1 with each element. Bags are Z-sets where all
weights are positive. Crucially, Z-sets can also represent

changes to sets and bags. Negative weights in a change

represent elements that are being “removed”.

The remaining definitions in this section will be used

to argue that circuits based on Z-sets can exactly im-

plement the relational algebra operators.

Definition 13 We say that a Z-set represents a set if

the weight of every element is one. We define a function

to check this property isset : Z[A]→ B given by:

isset(m)
def
=

{
true if m[x] = 1,∀x ∈ m

false otherwise

For our example isset(R) = false, since R[anne] = −1.

Definition 14 We say that a Z-set is positive (or a

bag) if the weight of every element is positive. We de-

fine a function to check this property

ispositive : Z[A]→ B given by

ispositive(m)
def
=

{
true if m[x] ≥ 0,∀x ∈ A

false otherwise

If isset(m), then ispositive(m). For our example Z-set,
ispositive(R) = false.

We write m ≥ 0 when m is positive. For positive

m,n ∈ Z[A] we write m ≥ n for iff m − n ≥ 0. ≥ is a

partial order.

We call a function f : Z[A] → Z[B] positive if it

maps positive values to positive values: ∀x ∈ Z[A] . x ≥
0Z[A] ⇒ f(x) ≥ 0Z[B]. We use the same notation for

functions: ispositive(f).

Definition 15 (distinct) The function dist :

Z[A]→ Z[A] “converts” a Z-set into a set:

dist(m)[x]
def
=

{
1 if m[x] > 0

0 otherwise

Notice that dist “removes” duplicates from mul-

tisets, and it also eliminates elements with negative

weights. dist(R) = {joe 7→ 1, mary 7→ 1}. While very

simple, this definition of dist has been carefully chosen

to enable us to implement the relational (set) operators

using Z-sets operators.

4.2 Relational operators on Z-sets

The fact that relational algebra can be implemented by

computations on Z-sets has been shown before, e.g. [49].

The translation of the relational operators to DBSP is

shown in Table 1. The first row of the table shows that

a composite query is translated recursively. This gives

us a recipe for translating an arbitrary relational query

plan into a DBSP circuit.

The translation is fairly straightforward, but many

operators require the application of a dist to produce

sets. For example, a∪b = dist(a+b), a\b = dist(a−b),
(a × b)((x, y)) = a[x] × b[y]. Notice that the use of the

dist operator allows DBSP to model the full relational

algebra, including set difference (and not just the posi-

tive fragment).

Prior work (e.g., Proposition 6.13 in [48]) has shown

how some invocations of dist can be eliminated from

query plans without changing the query semantics; we

will see that the incremental version of dist incurs sig-

nificant space costs, so it is worth minimizing its use.

Proposition 9 Let Q be one of the following Z-sets
operators: filtering σ, join ▷◁, or Cartesian product ×.
Then we have ∀i ∈ Z[A] . ispositive(i) ⇒ Q(dist(i)) =

dist(Q(i)). (For binary operators, on the left of = the

dist is applied to every input.)

i dist Q o ∼= i Q dist o

This rule allows us to delay the application of dist .

Proposition 10 Let Q be one of the following Z-sets
operators: filtering σ, projection π, map(f)2, addition

+, join ▷◁, or Cartesian product ×. Then we have

ispositive(i)⇒ dist(Q(dist(i))) = dist(Q(i)).

i dist Q dist o ∼=
i Q dist o

2 Technically, map (applying a user-defined function to
each row) is not relational.
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Table 1 Implementation of SQL relational set operators as circuits computing on Z-sets.

Operation SQL example DBSP circuit Details

Composition
SELECT ... AS O FROM

(SELECT ... AS I

FROM I0)

I0 CI CO O
CI circuit for inner query,
CO circuit for outer query.

Union
(SELECT * FROM I1)

UNION

(SELECT * FROM I2)

I1

I2

+ dist O
dist eliminates duplicates. An implementation of
UNION ALL does not need the dist.

Projection
SELECT DISTINCT I.c

FROM I
I πc dist O

Project each row with its weight unchanged. Add
up weights of identical rows.

Filtering
SELECT * FROM I

WHERE P(...)
I σP O

P is a predicate applied to each row. Select each
row separately. If the row is selected, preserve the
weight, else make the weight 0.

Cartesian
product

SELECT I1.*, I2.*

FROM I1, I2

I1

I2

× O
The weight of the pair (a,b) is the product of the
the weights of a and b.

Equi-join
SELECT I1.*, I2.*

FROM I1 JOIN I2

ON I1.c1 = I2.c2

I1

I2

▷◁c1=c2 O
Multiply the weights of the rows that appear in the
output.

Intersection
(SELECT * FROM I1)

INTERSECT

(SELECT * FROM I2)

I1

I2

▷◁ O
Special case of equi-join when both relations have
the same schema.

Difference
SELECT * FROM I1

EXCEPT

SELECT * FROM I2

I1

I2 −
+ dist O

dist removes rows with negative weights from the
result.

These properties allow us to “consolidate” distinct

operators by performing one dist at the end of a chain

of computations. This optimization is also used in tra-

ditional database optimizers.

4.3 Incremental view maintenance

Let us consider a relational query Q defining a view V .

To create a circuit that maintains incrementally V we

apply the following mechanical steps:

Algorithm 1 (incremental view maintenance)

1. Translate Q into a circuit using the rules in Table 1.

2. Apply dist elimination rules (Propositions 9, 10)3.

3. Lift the whole circuit, by applying Proposition 1,

converting it to a circuit operating on streams.

4. Incrementalize the whole circuit “surrounding” it

with I and D.
5. Apply the chain rule from Proposition 8 on the cir-

cuit to optimize the implementation.

This algorithm is deterministic and its running time

is given by the number of operators in the query. Step

3 If the rules are applied until convergence, the order in
which the rules are applied does not matter, since the algo-
rithm is confluent: it always produces the same final result.

(2) generates an equivalent circuit, with possibly fewer

dist operators. Step (3) yields a circuit that consumes

a stream of complete database snapshots and outputs

a stream of complete view snapshots. Step (4) yields

a circuit that consumes a stream of database changes

and outputs a stream of view changes; however, the in-

ternal operation of the circuit is non-incremental, as it

rebuilds the complete database using integration oper-

ators. Step (5) incrementalizes the circuit by replacing

each primitive operator with its incremental version.

Most of the operators that appear in the circuits

in Table 1 are linear, and thus have very efficient in-

cremental versions (we discuss complexity in §4.5). A
notable exception is dist . The next proposition shows

that the incremental version of dist is also efficient, and

it can be computed by doing work proportional to the

size of the input change:

Proposition 11 (incremental dist)

∆d (↑dist)∆ ∆o ∼=
∆d I z−1

↑H ∆o

where H : Z[A]× Z[A]→ Z[A] is defined as:



DBSP: Automatic Incremental View Maintenance for Rich Query Languages 9

H(i, d)[x]
def
=


−1 if i[x] > 0 and (i+ d)[x] ≤ 0

1 if i[x] ≤ 0 and (i+ d)[x] > 0

0 otherwise

This incremental implementation of dist has been

known for a long time; for example, it is called the ∃
operator in [80]. This implementation has several inter-

esting features:

– The implementation uses an integral operator I to

reconstitute the entire input set of the distinct op-

erator from the set of changes. This is the “top”

input of the H function. The implementation needs

to maintain the entire input set (similar to joins) in

order to discover whether an item is new or not.

– Despite this fact, the result of dist for an input

change can still be computed with work propor-

tional to the size of the change. H detects whether

the weight of a row in the full set is changing sign

(from negative to positive on a row insertion, and

from positive to negative on a deletion) when the

row appears in a new change. Only tuples that ap-

pear in the input change ∆d can appear in the out-

put change ∆o, so the work performed is O(|∆d)|.

The algorithm 1 reduces the problem of incremen-

tal execution of a query plan to the incremental exe-

cution of subplans/primitive operators. However, this

algorithm can be applied even if we use a primitive P

for which no efficient incremental version is known: we

can always use the inefficient “brute-force” implemen-

tation given by P∆ = D ◦ ↑P ◦ I.

4.4 Relational Query Example

Let’s apply the IVM algorithm to the following SQL

query:

CREATE VIEW v AS

SELECT DISTINCT a.x, b.y FROM (

SELECT t1.x, t1.id FROM t1 WHERE t1.a > 2

) a JOIN (

SELECT t2.id, t2.y FROM t2 WHERE t2.s > 5

) b ON a.id = b.id

Step 1: Create a DBSP circuit to represent this

query using the rules in Table 1; this circuit is essen-

tially a dataflow implementation of the query.

t1 σa>2 πx,id

t2 σs>5 πy,id

▷◁id=id πx,y dist V

Step 2: eliminate dist operators, producing an equiv-

alent circuit; (no changes are produced, but we omit the

subscripts to save space):

t1 σ π

t2 σ π

▷◁ π dist V

Note that some arrows that were sets in the original

circuit may be multisets in the optimized circuit.

Step 3: lift the circuit to compute over streams; all

arrows are doubled and all functions are lifted:

t1 ↑σ ↑π

t2 ↑σ ↑π

↑ ▷◁ ↑π ↑dist V

Step 4: incrementalize circuit, obtaining a circuit

that computes over changes; this circuit receives changes

to relations t1 and t2 and for each such change it pro-

duces the corresponding change in the output view V:

∆t1 I ↑σ ↑π

∆t2 I ↑σ ↑π

↑ ▷◁ ↑π ↑dist D ∆V

Step 5: apply the chain rule to rewrite the circuit as

a composition of incremental operators; notice the use

of .∆ for all operators:

∆t1 (↑σ)∆ (↑π)∆

∆t2 (↑σ)∆ (↑π)∆

(↑ ▷◁)∆ (↑π)∆ (↑dist)∆ ∆V

Use the linearity of σ and π to simplify this circuit

(notice that all linear operators no longer have a ·∆):

∆t1 ↑σ ↑π

∆t2 ↑σ ↑π

(↑ ▷◁)∆ ↑π (↑dist)∆ ∆V

Finally, replace the incremental join and the incre-

mental dist , with their incremental implementations,

obtaining the following circuit (we have used a slightly

different expansion for the join than the one shown pre-

viously; this one only contains two integrators):

∆t1 ↑σ ↑π

∆t2 ↑σ ↑π

I

I z−1

↑ ▷◁

↑ ▷◁

+ ↑π I z−1

↑H ∆V

Notice that the resulting circuit contains three inte-

gration operations: two from the join, and one from the

dist . It also contains two join operators. However, the

work performed by each operator for each new input is

proportional to the size of its input change.

4.5 Complexity of incremental circuits

Incremental circuits are efficient. We evaluate the cost

of a circuit while processing the t-th input change. Even

if Q is a pure function, Q∆ is actually a streaming sys-

tem, with internal state. This state is stored entirely

in the delay operators z−1, some of which appear in I
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and D operators4. The result produced by Q∆ on the

t-th input depends in general not only on the new t-th

input, but also on all prior inputs it has received.

We argue that each operator in the incremental ver-

sion of a circuit is efficient in terms of work and space.

We make the standard IVM assumption that the in-

put changes of each operator are small: |∆DB[t]| ≪
|DB[t]| = |(I(∆DB))[t]|5. We omit the time-index [t]

for readability in the rest of the section when it is un-

ambiguous; all formulas below hold for every time step.

An unoptimized incremental operator Q∆ = D◦Q◦
I evaluates query Q on the whole database DB, the

integral of the input stream: DB = I(∆DB); hence

its time complexity is the same as that of the non-

incremental evaluation of Q. In addition, each of the

I and D operators uses O(|DB|) memory.

Step (5) of the incrementalization algorithm applies

the optimizations described in §3; these reduce the time

complexity of each unary operator to O(|∆DB|). Bi-
linear operators, including join, can be evaluated in

time O(|DB| × |∆DB|); both of these are a factor of

|DB|/|∆DB| better than full re-evaluation. For exam-

ple, Theorem 2, allows evaluating S∆, where S is a

linear operator, in time O(|∆DB|). The I operator

can also be evaluated in O(|∆DB|) time, because all

values that appear in the output of I(∆DB)[t] must

be present in current input change ∆DB[t]6. Similarly,

while the dist operator is not linear, (↑dist)∆ can also

be evaluated in O(|∆DB|) according to Proposition 11.

The space complexity of linear operators is zero

(O(1)), since they store no data persistently. The space

complexity of operators such as (↑dist)∆, (↑ ▷◁)∆, I,
and D is O(|DB|). They need to store their input or

output relations in full (moreover, some of these are in-

termediate results, which may be even larger than the

input database).

5 Recursive queries

Recursive queries are very useful in a many appli-

cations. For example, graph algorithms such as graph

reachability or transitive closure are naturally expressed

using recursive queries.

We introduce two simple DBSP stream operators

that are used for expressing recursive query evaluation.

These operators allow us to build circuits implement-

4 For standard relational queries, after applying step 5 of
the algorithm there will be no D operators left in the circuit.
5 One can write SQL programs where each output row can

change even for very small input changes, so this assumption
does not always hold in practice, but even in this case, the
asymptotic work performed by the incremental query is not
worse than the work of the original query.
6 Assuming concatenation is constant-time; in our imple-

mentation the cost of I is O(|∆DB| log(|DB|)) per time step.

ing looping constructs, which are used to iterate com-

putations until a fixed-point is reached. The following

definition allows us to describe what a fixed point is in

terms of streams:

Definition 16 (zero a.e.) We say that a stream s ∈
SA is zero almost everywhere if it has a finite num-

ber of non-zero values, i.e., there exists a time t0 ∈ N
s.t. ∀t ≥ t0.s[t] = 0. Denote the set of streams that are

zero almost everywhere by SA ⊂ SA.

Definition 17 (stream introduction) The delta func-

tion (named from the Dirac delta function) δ : A→ SA
produces a stream from a scalar value:

δ(v)[t]
def
=

{
v if t = 0

0A otherwise

The input of δ has a single arrow, while the output

has a double arrow. For example:

x δ · · · 0 0 0 x

Definition 18 (stream elimination) We define the

function
∫
: SA → A, over streams that are zero almost

everywhere, as
∫
(s)

def
=

∑
t≥0 s[t].∫

simply adds up all values in the input stream and

produces a scalar result with the sum.
∫

is closely re-

lated to I; if I is the indefinite (discrete) integral,
∫

is the definite (discrete) integral on the interval 0−∞.

For example,
∫
( · · · 0 3 2 1 ) = 6.

In circuits constructed for many classes of queries,

including relational and Datalog queries given below,

the
∫

operator can be “approximated” without loss of

precision by integrating until it encounters the first 0.

Notice that the input of
∫

is a double arrow, while

the output is a single arrow. E.g.,:

· · · 0 3 2 1
∫

6

Proposition 12 δ and
∫

are LTI.

5.1 Nested time domains

So far we have used a tacit assumption that “time”

is common for all streams in a program. For example,

when we add two streams, we assume that they use the

same “clock” for the time dimension. However, the δ

operator creates a stream with a “new”, independent

time dimension. We require well-formed circuits to “in-

sulate” such nested time domains by “bracketing” them

between a δ and an
∫

operator:

i δ Q
∫

o
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In the above circuit Q is a streaming operator, but

the entire circuit is a scalar function, shown by the sin-

gle input and output arrows. As we discuss briefly in

Section 7.2, DBSP circuits are Turing-complete. Thus,

in general there exists no simple syntactic criterion to

decide whether a query Q returns a stream that is zero

almost everywhere. For a Q that does not return such

a stream, the above circuit never terminates, since
∫

never returns a value.

Algorithm 2 below, which translates recursive queries

to DBSP circuits, always produces well-formed circuits.

5.2 Implementing recursive queries

We describe the implementation of recursive queries

in DBSP for stratified Datalog. In general, a recur-

sive Datalog program defines a set of mutually recur-

sive relations O1, .., On as an equation (O1, .., On) =

R(I1, .., Im, O1, .., On), where I1, .., Im are input rela-

tions and R is a non-recursive query.

We describe here the algorithm for the simpler case

of a single-input, single-output query7. The input of our

algorithm is a Datalog query of the form O = R(I,O),

where R is a relational, non-recursive query, produc-

ing a set as a result, but whose output O is also an

input. The output of the algorithm is a DBSP circuit

which evaluates this recursive query producing output

O when given the input I. In this section we build a

non-incremental circuit, which evaluates the Datalog

query; in §6 we incrementalize this circuit.

Algorithm 2 (recursive queries)

1. Implement the non-recursive relational query R as

described in §4 and Table 1; this produces an acyclic

circuit whose inputs and outputs are Z-sets:
I

O

R O

In all these diagrams we show input 0 of operator R

on the left, and input 1 on the bottom.

2. Lift this circuit to operate on streams:

I

O

↑R O

We construct ↑R by lifting each operator of the cir-

cuit individually according to Proposition 1.

3. Build a cycle, connecting the output to the corre-

sponding recursive input via a delay:

I ↑R O

z−1

7 The general case for any number of mutually recursive
relations is shown in the companion technical report [28], and
is only slightly more involved.

4. “Bracket” the circuit, first with I and D nodes, and

then with δ and
∫
:

I δ I ↑R D
∫

O
o

z−1

We argue that the cycle inside this circuit computes

iteratively the fixed point of R. The D operator yields

the set of new Datalog facts (changes) computed by

each iteration of the loop. When the set of new facts

becomes empty, the fixed point has been reached:

Theorem 4 (recursion correctness) If isset(I), the

output of the circuit above is the relation O as defined by

the Datalog semantics of given program R as a function

of the input relation I.

Proof Let us compute the contents of the o stream, pro-

duced at the output of R. We show that this stream

contains increasing approximations of the value of O.

Define the following one-argument function: S(x) =

λx.R(I, x). Notice that the left input of the ↑R block is

a constant stream with the value I. Due to the stratified

nature of the language, we must have ispositive(S), so

∀x . S(x) ≥ 0. We get the following system of equations:

o[0] =S(0)

o[t] =S(o[t− 1])

So, by induction on t we have o[t] = St(0), where by St

we mean S ◦ S ◦ . . . ◦ S︸ ︷︷ ︸
t

. If there is a time k such that

Sk(0) = Sk+1(0), we have ∀j . Sk+j(0) = Sk(0). Apply-

ing a D to this stream will then produce a stream that
is zero almost everywhere, and integrating this result

will return the last distinct value in the stream o.

This is essentially the definition of the semantics of

a recursive Datalog relation: O = fixx.R(I, x). ⊓⊔

Note that if the query R computes over unbounded

data domains (e.g., using integers with arithmetic), this

construction does not guarantee that at runtime a fixed

point is reached. But if a program does converge, the

above construction will find the least fixed point.

In fact, this circuit implements the standard naive

evaluation algorithm (e.g., see Algorithm 1 in [47]).

Notice that the inner part of the circuit is the incre-

mental form of another circuit, since it is sandwiched

between I and D operators. Using the cycle rule of

Proposition 8 we can rewrite this circuit as:

x δ (↑R)∆
∫

O

z−1
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This circuit implements semi-naive evaluation (Al-

gorithm 2 from [47]). We have just proven the correct-

ness of semi-naive evaluation as an immediate conse-

quence of the cycle rule!

5.3 Example recursive query

Let us apply Algorithm 2 to a concrete Datalog pro-

gram, which computes the transitive closure of a di-

rected graph:

// Edge relation with head and tail

input relation E(h: Node , t: Node)

// Reach relation with source s and sink t

output relation R(s: Node , t: Node)

R(x, y) :- E(x, y).

R(x, y) :- E(x, z), R(z, y).

Step 1: we ignore the fact that R is both an input

and an output and we implement the DBSP circuit cor-

responding to the body of the query. This query could

be expressed in SQL as:

( SELECT * FROM E )

UNION

( SELECT E.h , R.t

FROM E JOIN R ON E.t = R.s )

Step 1: This generates a circuit with inputs E and R:

E

R ▷◁t=s πh,t

+ dist R

Step 2: Lift the circuit by lifting each operator:

E

R ↑ ▷◁t=s ↑πh,t

+ ↑dist R

Step 3: Connect the feedback loop implied by R:

E

↑ ▷◁t=s ↑πh,t

+ ↑dist R

z−1

Step 4: “bracket” the circuit with I-D, and with δ-
∫
:

E δ I

↑ ▷◁t=s ↑πh,t

+ ↑dist D
∫

R

z−1

The above circuit is a complete implementation of

the non-streaming recursive query; given an input rela-

tion E it will produce its transitive closure R as output.

Now we use cycle rule to convert this circuit to semi-

naive evaluation (to save space we omit indices):

E δ

(↑ ▷◁)∆ (↑π)∆

+ (↑dist)∆
∫

R

z−1

Using the linearity of ↑π, this can be rewritten as:

E δ

(↑ ▷◁)∆ ↑π

+ (↑dist)∆
∫

R

z−1

This circuit contains two lifted incremental oper-

ators, a join and a distinct; these can be further ex-

panded into simpler primitives as in the final step in

Section 4.4. This implementation matches the efficiency

of Datalog semi-naive evaluation engines, but does not

yet handle incremental updates. These are the subject

of the next section.

6 Incremental recursive programs

In §2–4 we showed how to incrementalize a rela-

tional query by compiling it into a circuit, lifting the

circuit to compute on streams, and applying the ·∆
operator. In §5 we showed how to compile a recursive

query into a circuit using incremental computation in-

ternally (using semi-naive evaluation), to compute the

fixed point. Here we combine these results to construct

a circuit that evaluates a recursive query incrementally.

The circuit receives a stream of updates to input rela-

tions, and for every update recomputes the fixed point.

To do this incrementally, it preserves the stream of

changes to recursive relations produced by the itera-

tive fixed point computation, and adjusts this stream

to account for the modified inputs. Thus, every element

of the input stream yields a stream of adjustments to

the fixed point computation, using nested streams.

6.1 Nested streams

Nested streams, or streams of streams, SSA
= N →

(N→ A), are well defined, since streams form an Abelian

group. Equivalently, a nested stream is a value in N ×
N → A, i.e., a matrix with an infinite number of rows,

indexed by two-dimensional time (t0, t1), where each

row is a stream. For example, here is the nested stream

i ∈ SSN defined by i[t0][t1] = t0 + 2t1:

i =


[ 0 1 2 3 · · · ]
[ 2 3 4 5 · · · ]
[ 4 5 6 7 · · · ]
[ 6 7 8 9 · · · ]

· · ·


The same way we lift functions to produce stream

operators, we can lift stream operators to produce op-

erators on streams of streams.

Lifting a stream operator S : SA → SB yields an

operator over nested streams ↑S : SSA
→ SSB

, such

that (↑S)(s) = S ◦ s, or, pointwise: (↑S(s))[t0][t1] =

S(s[t0])[t1],∀t0, t1 ∈ N. In particular, a scalar function
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f : A → B can be lifted twice to produce an operator

between streams of streams: ↑↑f : SSA
→ SSB

.

(↑↑(x 7→ x mod 2))(i) =


[ 0 1 0 1 · · · ]
[ 0 1 0 1 · · · ]
[ 0 1 0 1 · · · ]
[ 0 1 0 1 · · · ]

· · ·


z−1 delays the rows of the matrix:

z−1(i) =


[ 0 0 0 0 · · · ]
[ 0 1 2 3 · · · ]
[ 2 3 4 5 · · · ]
[ 4 5 6 7 · · · ]

· · ·


while its lifted version delays each column:

(↑z−1)(i) =


[ 0 0 1 2 · · · ]
[ 0 2 3 4 · · · ]
[ 0 4 5 6 · · · ]
[ 0 6 7 8 · · · ]

· · ·


We show nested streams with triple arrows:

i ↑↑f o

To define recursive nested queries, we need a slightly

different definition of strictness. If we think of a nested

stream F : SSA
→ SSB

as a function of timestamps

(i, j), then the prior definition of strictness corresponds

to strictness in the first dimension i, which we extend

here to allow F to be strict in its second dimension

j: for any s, s′ ∈ SSA
and all times t ∈ N, ∀i, j <

t . s[i][j] = s′[i][j] implies F (s)[i][t] = F (s′)[i][t]. Propo-

sition 2 holds for this extended notion of strictness, i.e.,

the fixed point operator fixα.F (α) is well defined for a

strict operator F .

Proposition 13 The operator ↑z−1 : SSA
→ SSA

is

strict (in its second dimension).

The I operator on SSA
operates on rows of the ma-

trix, treating each row as a single value. Lifting a stream

operator computing on SA, such as I : SA → SA, also
produces an operator on nested streams, but computing

on the columns of the matrix ↑I : SSA
→ SSA

.

Proposition 14 (lifting cycles) For a binary, causal

T we have: ↑(λs.fixα.T (s, z−1(α))) =

λs.fixα.(↑T )(s, (↑z−1)(α)) i.e., lifting a circuit contain-

ing a cycle can be accomplished by lifting all operators

independently, including the z−1 back-edge.

This means that lifting a DBSP stream operator can

be expressed within DBSP itself. For example, we have:

i ↑I o ∼=

i + o

↑z−1

This proposition gives the ability to lift entire cir-

cuits, including circuits with feedback edges, producing

well-defined results.

6.2 Programs on nested streams

With this machinery we can now apply Algorithm 1

to arbitrary circuits, even circuits built for recursively-

defined relations.

Step 1: Start with the “semi-naive” circuit:

x δ0 (↑R)∆
∫

O

z−1

Step 2: nothing to do for dist .

Steps 3 and 4: Lift the circuit and incrementalize:

∆x I ↑δ0 ↑(↑R)∆ ↑
∫

D ∆O

↑z−1

Step 5: use the chain rule and linearity of ↑δ0 and ↑
∫
:

∆x ↑δ0 (↑(↑R)∆)
∆ ↑

∫
∆O

↑z−1

This is the incremental version of a recursive query!

6.3 Example incrementalized recursive query

The discussion above is very abstract, so let’s see a con-

crete example. We take the DBSP circuit for the tran-

sitive closure of a graph generated in §5.3 and convert

it to an incremental circuit using algorithm 1. The re-

sulting circuit maintains the transitive closure as edges

are inserted or removed.

First we lift the circuit entirely, using Proposition 14:

E ↑δ

↑(↑ ▷◁)∆ ↑↑π

+ ↑(↑dist)∆ ↑
∫

R

↑z−1

We convert this circuit into an incremental circuit,

which receives in each transaction the changes to rela-

tion E and produces the corresponding changes to R:

∆E I ↑δ

↑(↑ ▷◁)∆ ↑↑π

+ ↑(↑dist)∆ ↑
∫

D ∆R

↑z−1

Apply the chain and cycle rules:
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∆E (↑δ)∆

(↑(↑ ▷◁)∆)
∆

(↑↑π)∆

+ (↑(↑dist)∆)
∆

(↑
∫

)∆ ∆R

(↑z−1)∆

Use the linearity of ↑δ, ↑
∫
, ↑z−1, and ↑↑π to sim-

plify the circuit by removing some ·∆ invocations:

∆E ↑δ

(↑(↑ ▷◁)∆)
∆ ↑↑π

+ (↑(↑dist)∆)
∆ ↑

∫
∆R

↑z−1

There are two applications of ·∆ remaining in this

circuit: (↑(↑ ▷◁)∆)
∆
and (↑(↑dist)∆)

∆
. We expand their

implementations separately, and we stitch them into the

global circuit at the end. This ability to reason about

sub-circuits highlights the modularity of DBSP.

The join is expanded twice, using the bilinearity of

↑ ▷◁ and ↑↑ ▷◁. Let’s start with the inner circuit, imple-

menting (↑ ▷◁)∆, given by Theorem 3:
a

b

(↑ ▷◁)∆ o∼=

a

b

I

I z−1

↑ ▷◁

↑ ▷◁

+ o

Lift and incrementalize to get the circuit for (↑(↑ ▷◁)∆)
∆
:

a

b

I

I

↑I

↑I ↑z−1

↑↑ ▷◁

↑↑ ▷◁

+ D o

Using the chain rule and linearity of ↑I and ↑z−1:

a

b

↑I

↑I ↑z−1

(↑↑ ▷◁)∆

(↑↑ ▷◁)∆

+ o

We now have two applications of (↑↑ ▷◁)∆. Each of

these is the incremental form of a bilinear operator, so

it in the end we will have 2×2 = 4 applications of ↑↑ ▷◁.
Here is the final form of the expanded join circuit:

a

b

↑I

I

I

z−1

I

↑I

z−1

I ↑z−1

↑z−1

↑↑ ▷◁

↑↑ ▷◁

↑↑ ▷◁

↑↑ ▷◁

+ o

(6.1)

Returning to (↑(↑dist)∆)
∆
, we can compute its cir-

cuit by expanding once using Proposition 11:

i (↑(↑dist)∆)
∆ o ∼=

i I ↑I ↑z−1

↑↑H D o

Finally, stitching all these pieces together we get the

final circuit shown in Figure 1.

6.4 Cost of incremental recursive queries

Time complexity.

The time complexity of an incremental recursive

query can be estimated as a product of the number

of fixed point iterations and the complexity of each

iteration. The incrementalized circuit never performs

more iterations than the non-incremental circuit: once

the non-incremental circuit reaches the fixed point, its

output is constant, and the derivative of corresponding

value in the incrementalized circuit is 0.

Moreover, the work performed by each operator in

the incremental circuit is asymptotically less than the

non-incremental one. A detailed analysis can be found

in our companion report [28].

Space complexity.

Integration (I) and differentiation (D) of a stream

∆s ∈ SSA
use memory proportional to

∑
t2

∑
t1
|s[t1][t2]|,

i.e., the total size of changes aggregated over columns

of the matrix. The unoptimized circuit integrates and

differentiates respectively inputs and outputs of the re-

cursive program fragment. As we move I and D inside

the circuit using the chain rule, we additionally store

changes to intermediate streams. Effectively we cache

results of fixed point iterations from earlier timestamps

to update them efficiently as new input changes arrive.

Notice that space usage is proportional to the number

of iterations of the inner loop that computes the fixed-

point. Fortunately, many recursive algorithms converge

in a relatively small number of steps (for example, tran-

sitive closure performs log(graph diameter) steps.

7 DBSP expressivity

7.1 Formal verification

We have formalized and verified all the definitions, lem-

mas, propositions, theorems, and examples in this pa-

per using the Lean theorem prover; we make these proofs

available at [32]. The formalization builds on math-

lib [73], which provides support for groups and func-

tions with finite support (modeling Z-sets). We believe
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∆E ↑δ

↑I

I

I

z−1

I

↑I

z−1

I ↑z−1

↑z−1

↑↑ ▷◁

↑↑ ▷◁

↑↑ ▷◁

↑↑ ▷◁

+ ↑↑π

+ I ↑I ↑z−1

↑↑H D ↑
∫

∆R

↑z−1

Fig. 1 Final form of circuit from §5.3 which is incrementally maintaining the transitive closure of a graph.

the simplicity of DBSP enabled completing these proofs

in relatively few lines of Lean code (5K) and keeping a

close correspondence between the paper proofs in [28]

and Lean. The existence of the proofs bolsters our con-

fidence in the correctness of our implementation.

7.2 Beyond relational queries

DBSP can express programs that go beyond Datalog,

SQL, or incremental versions of these: see the non-

monotonic semantics for Datalog¬ and Datalog¬¬[9].

DBSP can model many classes of streaming operators

and stateful streaming computations.
For example, to illustrate the Turing-completeness

of DBSP, we implement the following while program,
where Q is an arbitrary query:

x := i;

while (x changes)

x := Q(x);

The DBSP implementation of this program is:

i δ + ↑Q D
∫

x

z−1

This circuit can be converted to a streaming circuit

that computes a stream of values i by lifting it; it can

be incrementalized using Algorithm 1 to compute on

changes of i:

∆i ↑δ + (↑↑Q)∆ ↑D ↑
∫

∆x

↑z−1

At runtime the execution of this circuit is not guar-

anteed to terminate; however, if the circuit does termi-

nate, it will produce the correct output, i.e., the least

fixpoint of Q that includes i.

7.3 Supporting SQL

In §4 we have shown how to implement the relational

algebra using DBSP. However, the SQL language is sig-

nificantly richer than the relational algebra.

Multisets.

SQL operates onmultisets (or bags), e.g., UNION ALL.

Since Z-sets generalize bags, they can model all SQL

operations. Many queries on multisets can be imple-

mented by just omitting dist operators.

NULLs.

DBSP says nothing about the data types and the

functions that are executed by the operators in each

node. In our Rust SQL runtime (described in Section §8.1)
nullable types are represented using Rust Option<> types,

and SQL NULL is the value None. Some care is required

in implementing the unusual semantics of NULL (e.g., in

SQL two NULL values are neither equal, nor different).

Primary keys.

A primary key changes a table’s behavior on inser-

tion: inserting a tuple can cause another tuple to be

deleted. This behavior looks roughly like a modified

dist operator, and can be implemented incrementally

similarly:

∆d I z−1

UPSERT ∆o

The UPSERT operator converts a Z-set describing an in-

sertion with key k: {(k, v) 7→ 1} to a Z-set {(k, v) 7→
1, (k, v′) 7→ −1}, where (k, v′) is the previous value of

the record, obtained from the I operator.

Constant values.

One can write in SQL queries that have constant

outputs, e.g., SELECT 2. Technically an operator that

produces a constant result is not TI. However, constants
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can be accommodated easily by modeling them math-

ematically as constant input streams.

7.3.1 Grouping and indexed Z-sets

Let K be a set of “key” values. The finite maps from

K to Z-sets are functions K → Z[A] = Z[A][K]. We

call values i of this type indexed Z-sets: for each key

k ∈ K, i[k] is a Z-set. Because the codomain Z[A] is an

Abelian group, this structure is itself an Abelian group.

Here is an example indexed Z-set:

Name Weight

joe 1

Name Weight

mary 2

Key

j

m

a

Index

Z-sets

Name Weight

anne -1

This structure is used to implement the SQL GROUP

BY operator in DBSP. Consider a partitioning func-

tion p : A → K that assigns a key to any value in A.

We define the grouping function Gp : Z[A] → Z[A][K]

as Gp(a)[k]
def
=

∑
x∈a.p(x)=k{x 7→ a[x]} (just map each

element of the input a to the Z-set grouping correspond-
ing to its key). When applied to a Z-set this function

returns an indexed Z-set: each key k maps to a Z-set
containing all elements of the group (as in SQL, each

group is a multiset). Consider our example Z-set R from

§4, and a key function p(s) that returns the first letter

of the string s. The resulting indexed Z-set is shown in

the previous diagram.

The operation building an indexed Z-set from a Z-
set is linear for any key function! It follows that group-

by is incremental: each row changed in the input rela-

tion produces a row changed in a group, obtained by

applying the partitioning function.

Notice that, unlike SQL, DBSP can express natu-

rally computations on indexed Z-sets, they are just an

instance of a group structure. In DBSP one does not

need to follow grouping by aggregation, and DBSP can

represent nested groupings of arbitrary depth. Indeed,

our compiler can recognize classes of such computa-

tions expressed using SQL windows (e.g., TopK for each

group), and can generate efficient incremental code.

A useful operation on indexed Z-sets is flatmap (or

UNNEST in SQL), which one can view as the inverse of

grouping, converting an indexed Z-set into a Z-set. This
operation is also a linear DBSP operator.

7.3.2 Aggregation

Aggregation in SQL applies a function a to a set of val-

ues of type A producing a “scalar” result with some

result type B. In DBSP an aggregation function has

a signature a : Z[A] → B. When operating on Z-sets,
most aggregation functions have to multiply the contri-

bution of each value by its associated weight (but not

aggregates such as MAX). DISTINCT aggregates have to

first apply a DISTINCT operator.

Distributive (e.g. SUM) and some algebraic aggrega-

tion (AVG) functions can be implemented by a pair of

linear functions between Z-sets and the target group:

the actual aggregation and the post-processing (e.g., di-

viding the sum by the counter for average). Since these

are linear functions, it would seem that they can be

implemented using linear operators in DBSP. However,

this is not true!

The subtle point is that in SQL the result of these

aggregation must be a (singleton) set containing an el-

ement of B, and not a value with type B. Thus an ag-

gregate based on a linear function is decomposed into a

linear DBSP operator, followed by additional operators,

which are needed to convert the values of B into values

of Z[B]. The later operators are not linear. Consider the

following query: SELECT COUNT(*) FROM I. The lifted

incremental version of this query is the following cir-

cuit, where aCOUNT is a linear operator implementing the

“count” aggregation function, which just sums up the

weights of the input values:

∆I πC aCOUNT inc

I

I z−1

UPSERT ∆o

Let’s say the input table I has 2 elements, and thus

the previous aggregation result was 2. When adding a

new row, the inc increments the previous aggregation

result (obtained from I) result with the current incre-
ment, and then the UPSERT converts the insertion of the

tuple {3 7→ 1} into the Z-set {3 7→ 1, 2 7→ −1}, since
the output set no longer contains the value 2. The inc,

I and UPSERT operators only do work proportional to

the size of the change, and they only store O(1) state.

Aggregate functions, such as MIN, are not linear in

the presence of deletions. The incremental form of such

aggregates needs to maintain the entire input collection,

using an I operator, similar to the dist operator. They

can be implemented efficiently by keeping the data or-

ganized as a priority heap sorted by the value compared.

In SQL, NULL values do not participate in aggre-

gation, so one needs to insert two extra operators for

collections of nullable values:

– an operator that counts the number of rows aggre-

gated (as described by Mumick [78]), which is used

to detect empty groups

– a filtering operator (linear), which eliminates NULLs

prior to aggregation
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For many SQL aggregation functions aggregating

over an empty set should produce a NULL result. All ag-

gregation circuits described so far will return an empty

Z-set for an empty input. Let z be the result expected

for the empty input (e.g., NULL). The following circuit,

applied after aggregation, will produce the result ex-

pected by SQL:

agg

map(λx.z) −

z

+ out

When agg is the empty Z-set, the “map” node produces

an empty Z-set, and the final result is just z. When agg

is non-empty, the top and bottom branches of the adder

cancel each other, and the result is agg. This scheme is

also implemented by Materialize Inc.’s IVM engine.

7.3.3 GROUP BY-AGGREGATE

Grouping in SQL is always followed by aggregation.

This can be modeled by the composition of our solu-

tions for grouping and aggregation described above. In

this case, the UPSERT operator indexes data using the

group key. For linear aggregates this operator needs to

maintain state proportional to the number of groups.

For aggregates based on non-linear functions, this main-

tains state proportional to the entire input collection.

7.3.4 Other operations on SQL groups

SQL constructs such as PARTITION BY/OVER make it

possible to write queries over groups, e.g., TOP-K. These

can be implemented in DBSP naturally as functions

over indexed Z-sets. Moreover, many such functions

(LAG, RANGE) can be implemented using highly efficient

incremental DBSP operators, which perform work pro-

portional to the size of the change.

7.3.5 Recursive SQL queries

SQL recursion is severely restricted by design [58] and

has a strange semantics. Instead of supporting standard

SQL recursion, in our implementation we have extended

the SQL syntax to support mutually recursive views by

adding a statement to declare recursive views prior to

their use; the syntax is similar to SQL table declara-

tions: DECLARE RECURSIVE VIEW V(col TYPE, ...).

We find this syntax much easier to use and under-

stand than the standard syntax using common-table

expressions. There are essentially no restrictions on the

queries that can be used to define mutually recursive

views; such queries do not have to be monotone. With

this change, SQL essentially includes Datalog as a sub-

language.

8 Implementation

In this section we describe an implementation of a

SQL compiler and runtime based on DBSP.

8.1 The DBSP Rust runtime

We have built an implementation of DBSP as part of an

open-source [43] project with an MIT license [42]. The

implementation consists of a Rust library for building

circuits and a runtime that executes these circuits using

a pool of worker threads.

The library provides APIs for basic algebraic data

types: such as groups, finite maps, Z-sets, indexed Z-
sets. The core data structure of the library for repre-

senting processed data is the “time-indexed, indexed

Z-set”. This is the most general data structure needed

in recursive circuits. It represents a vector (indexed by

time) of indexed Z-sets. Simple indexed Z-sets are rep-

resented by a vector with a single element, while Z-sets
are represented as indexed Z-sets with an empty value.8

The starting point of this implementation was the dif-

ferential dataflow trace data structure [74].

A circuit construction API allows users to create

DBSP circuits by inserting operator nodes — boxes

in our diagrams — and connecting them with streams

— the arrows in our diagrams. The library provides

more than 70 pre-built generic operators for integra-

tion, differentiation, delay, nested integration and dif-

ferentiation, and basic Z-set incremental operators, cor-

responding to plus, negation, grouping, joining, semi-
joins, anti-joins, temporal joins, primitive aggregates,

generic aggregates (fold), dist , flatmap, window aggre-

gates, indexing, upsert, etc. Some operators only ex-

ist in a pure incremental form (e.g., they only operate

correctly when fed deltas), and thus, when used in a

non-incremental circuit, have to be “inverted” using the

inversion property from Proposition 8.

For iterative computations the library provides the

δ operator and an operator that generalizes
∫

by ter-

minating iteration when all the operators in the corre-

sponding circuit cycle have reached a fixed point, which

is detected when neither outputs or state change in

an execution step. The low level library allows users

to construct incremental circuits manually by stitching

together incremental and non-incremental versions of

primitive operators.

The library also provides many “helper” operators

that are used by the code generator in the implementa-

8 Rust is very efficient at eliding empty data structures.
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tion of some streaming queries, e.g., for state garbage-

collection (a subject not discussed in this paper).

8.1.1 Parallelization and Scale-out

Besides computing on streams, DBSP circuits look very

much like other dataflow query engines. As such, all

standard parallelization algorithms described in the lit-

erature [46] can be applied. Our core circuits library

automatically parallelizes each circuit by sharding each

operators to execute using a specified number of worker

threads (all operators use the same number of threads,

which is statically-defined). The library automatically

inserts exchange operators to re-shard data when nec-

essary (e.g., shard on the common key in an equi-join).

The same scheme can be used to implement scale-out

solutions across multiple machines, but this part of the

runtime is still under development.

8.1.2 State management

Incremental computation is not free. It is in fact a trade-

off between time and space. While many incremental

query primitives are “stateless”, some important classes

of database operations, including joins, dist , and group-

by-aggregate use I operators in their incremental ex-

pansion. This state is kept in indexes. (In the DBSP

theoretical model the state is stored in delay operators

z−1 and ↑z−1, but these are always inside integrators

I.) All other operators are stateless.

The size of these indexes is proportional to the size

of the total input data of these operators — and thus

the total state of a circuit can even exceed the size of
the original database. (Many traditional IVM schemes

opt to recompute this state on demand, rather than

store it permanently; DBSP can model this strategy.)

At runtime, linear operators are essentially free. The

performance of a DBSP program is given by the cost of

maintaining and accessing the indexes.

Indexes provide two essential operations:

Write: Merging an existing (large) index with a new

(small) change.

Read: Looking up a (small) set of values.

Our implementation of indexes performs both these

operations in amortized time O(k log n), where k is the

size of the changes, and n is the size of the index.

The implementation of indexes is essentially a Log-

Structured Merge (LSM) Tree [83].

The data structure used for indexes, (called a trace

in the code), is shown in Figure 2. Each index is repre-

sented as a sequence of sorted immutable lists (called

batches), of exponentially increasing sizes (1, 2, 4, 8,

etc.) — a generalization of binary signed digits [4]. Any

batch is sorted lexicographically, first on the index, then

on the value. Each batch is a Z-set, and a trace repre-

sents the Z-set that is the sum of all component batches.

The same tuple can appear in different batches with dif-

ferent weights, but appears at most once in each batch.

Since addition is commutative and associative, parts

can be added in any order.

…

trace

batches (Z-sets)

Index

Delta

merge

…

write path read path

cursor

+

Fig. 2 Index representation and access.

A change added to an index is represented as a single

batch, sorted using the same order as the index. When

the index ingests a new change (left side of Figure 2),

the new batch is simply appended. As the index grows,

batches of similar size are lazily merged. Merges are per-

formed by background compaction threads; each merge

may span multiple circuit steps. The result of merging

2 batches with n1 and n2 tuples has n1 + n2 or fewer

tuples, and can even be empty if all weights add to 0.

Exponential search [22] is used to lookup the tu-

ples of a change inside an index (right side of Figure 2)

. When the same tuple is found in multiple lists, the

corresponding weights are added.

8.2 Secondary storage

Since indexes can be very large, in many applications

they need to be spilled to disk. Persistent storage also

helps for fault tolerance.

Initially we considered reusing an existing storage

engine for persisting state. Using RocksDB [41] seemed

a great choice due to its architectural similarities to the

way we manage state in-memory. RocksDB is mature,

widely used, and well-maintained software.

RocksDB is a generic key-value store that can rep-

resent multiple indexes using its column family feature,

with distinct namespaces for keys. It also offers all the

APIs we needed: quick value retrieval for a given key

and iteration over keys and values (both forward and

backward) from a starting point. RocksDB is also based

on an LSM-Tree.

The mature RocksDB Rust library provides all need-

ed operations, including custom comparators for keys,
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zero-copy get operations, bulk inserts, and control over

merging of entries with the same key during compaction.

Integrating RocksDB into our system was straight-

forward. We implemented the trace API described in

the previous section. Unfortunately, we encountered sev-

eral critical issues:

Lack of Scaling.

Our implementation utilizes multiple threads effec-

tively by sharding data, allowing the system to scale

well across many CPUs. To avoid contention, we placed

each persistent index in a separate column family in

RocksDB. However, we discovered that RocksDB doesn’t

scale well beyond a few threads. In fact, with RocksDB,

our pipelines performed best with a single thread.

Figure 3 illustrates the severity of the issue (note the

log-scale on the y-axis). It shows the performance for a

subset of the Nexmark queries that use indexes, com-

paring RocksDB with a single thread against RocksDB

with eight threads. For reference, we also include the

performance of our system configured to keep every-

thing in DRAM data structures (which, as expected,

performs much better).
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Fig. 3 Query throughput using RocksDB as a storage layer;
higher is better. Note the logarithmic Y axis.

Unable to Leverage Zero-Copy Deserialization.

Besides the scalability limitations, we also observed

significant overheads even when running on a single

thread. This was primarily due to the cost of deseri-

alizing keys and values from RocksDB (which stores

data as byte arrays) into the corresponding Rust types.

Slow Tests Due to Column Families.

Our core engine is tested using property-based test-

ing, and therefore runs the same unit-tests with thou-

sands of different inputs. When these tests required an

index, RocksDB would quickly generate thousands of

short-lived column families (one for each instantiated

test). This caused our test suite to slow down signif-

icantly, extending the total run time from around 2

minutes to approximately 30 minutes. We traced this

issue to a known performance degradation in RocksDB

when creating many column families, which is unre-

solved since 2019.

Since we could not find a suitable pre-existing stor-

age system, the remaining option was to build our own.

Building a key-value embedded database is a substan-

tial endeavor, so we did not make this choice lightly.

For this purpose, we implemented our own SStable-

like [33] file format. The traces write each batch that is

large enough to an individual file. Batches are always

created in sorted order, which allowed us to write these

files sequentially without any seeks and with minimal

in-memory buffering. Because batches are never modi-

fied in-place, the file format and the code that imple-

ments it does not need to make allowances for adding,

removing, or modifying data.

Moreover, the implementation of storage extends

the in-memory shared-nothing architecture: each worker

thread processes an independent stream of data, so the

storage layer can be per-thread as well.

8.2.1 Checkpointing and fault-tolerance

The state in delay z−1 operators is the only piece of in-

formation that needs to be persisted, checkpointed, or

migrated to make DBSP computations fault-tolerant.

Since DBSP circuits operate synchronously in steps,

by checkpointing the state between two execution steps

one obtains a consistent snapshot of the circuit’s state.

There is no need for a complicated synchronization pro-

tocol. Since the index data structures are immutable,

taking a snapshot can be done atomically using copy-

on-write. To complete a checkpoint we just need to en-

sure that each snapshot is written on secondary storage.

8.3 Compiling SQL to DBSP

We have built a compiler that accepts SQL programs

and generates Rust programs targeting the DBSP li-

brary. The architecture of the compiler is shown in Fig-

ure 4. The implementation follows Algorithm 1 very

closely. The input of the algorithm is a non-incremental

query plan, produced by a query planner. The algo-

rithm produces an incremental plan that is “similar”

to the input plan.

The compiler front-end, including the parser, valida-

tor, and the plan generator, are based on the Apache

Calcite [20] infrastructure. Because the incrementaliza-

tion algorithm starts from a standard, non-incremental
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Fig. 4 Architecture of the SQL compiler.

query plan, it can reuse in principle any existing plan-

ner. We rely on Calcite to decorrelate queries into joins,

for optimizing join ordering and performing a host of

traditional optimizations.

A relational algebra query can be implemented by

multiple plans, each with a different data-dependent

cost. Standard query planners use cost-based heuristics

and data statistics to optimize plans. A generic IVM

planner many not have this luxury, since the plan some-

times must be generated before (most) data has been

fed to the query. Nevertheless, all standard query opti-

mization techniques, perhaps based on historical statis-

tics, can be used to generate the initial query plan.

The compiler can compile any number of views; each

view can depend on any number of tables or other

views. Given a query Q, the compiler can generate both

incremental and non-incremental circuits (Q and Q∆).

The non-incremental circuits are used for validating the

compiler, because they must have the same semantics

as a standard ad-hoc SQL query.

The compiler supports “standard” SQL and is ma-

ture enough to pass 5+ million SQL Logic Tests [5].

– types: NULLs using the standard SQL ternary logic,

all standard SQL datatypes (including DATE/TIME/

TIMESTAMP), structured and semi-structured types,

such as arrays, maps, JSON, multisets, UUID, user-

defined types.

– operators: SELECT, WHERE, FILTER, HAVING, ORDER

BY, LIMIT, DISTINCT, EXCEPT, INTERSECT, UNION,

GROUP BY, aggregation, inner and outer JOINs, PIVOT,

ROLLUP, CUBE, temporal ASOF JOIN, windows

(PARTITION BY ... OVER), UNNEST, table functions,

common table expressions, correlated subqueries, and

some streaming extensions, like tumbling and hop-

ping windows, etc.

– A large assortment of SQL functions, including user-

defined functions that can be written in either SQL

or Rust.

– Currently, mutually recursive views support all query

operators except OVER. They are incrementally eval-

uated using Algorithm 2.

SQL has many constructs that may cause runtime

exceptions, such as arithmetic overflows; in a traditional

ad-hoc query system these would surface as queries that

terminate with an error. Currently these would also

cause a running pipeline to fail completely, but this so-

lution is unacceptable for a platform for long-running

computations. We are exploring alternative solutions,

where a runtime crash would block the pipeline, giv-

ing a chance to the operators to remove incorrect input

data that causes issues.

8.4 Interacting with the outside world

DBSP
query engine

SQL compiler

SQL program

input
adapter

Rust

Data
source

Data
sink

output
adapter

schema
Java

state

Fig. 5 Communicating with external data sources and sinks.

As noticed many years ago [69], database systems

are not designed to interact well with external IVM

systems. We provide a variety of adapters for interact-

ing with external data sources, both as inputs and out-

puts (e.g., Kafka [68], Amazon S3 [84], Google Pub/-

Sub [45], DataFrames [94], Delta Lake [17], database

CDC streams via Debezium [2], HTTP, etc., with more

added every day), and using many data formats (CSV,

JSON, Arrow, Avro, Parquet, etc.). Figure 5 shows how

a circuit uses adapters to communicate with the outside

world. The input adapters receive data from external

sources, buffer it, convert it into Z-sets, and feed it to

the circuits. The output adapters receive data from the
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circuit outputs in the form of Z-sets, and send it to a

downstream consumer in a suitable format.
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Fig. 6 Feldera Service architecture.

Feldera.com is a start-up that builds a series of

software products around the DBSP infrastructure. One

of the products is IVM-as-a-service. A version of the

service-oriented architecture of the company’s cloud of-

fering is shown in Figure 6. The pipeline manager is the

centralized control plane, which is responsible for man-

aging the entire life-cycle of the IVM programs. These

programs are deployed as pipelines that run in isolated

Docker containers. Feldera also offers a cloud form fac-

tor, which distributes the pipeline manager across sev-

eral communicating services and uses Kubernetes to

run the pipelines.

9 Experimental Evaluation

In this section we quantify some aspects of our im-

plementation. Looking at Figure 5, it is clear that data

crosses many layers. In this section we evaluate only the

performance of the central block, the DBSP query en-

gine. However, in most real-life application performance

will be limited by the adapters and network.

9.1 Cost of incremental updates

Here we validate our claim that updates in DBSP have

a cost proportional to the size of the change.

We ran TPC-H on a desktop computer, with a scale

factor 100, meaning that the input data is about 100

GB, consisting of about 1.6 billion records. We divided

the largest tables, orders and lineitem, which in total

contain about half the input records, into 10 equal-sized

batches, each comprising about 75,000,000 records. Be-

cause orders records refer to lineitem records, we en-

sured that if an order record was in a batch, so were
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Fig. 7 Incremental versus batch performance on TPC-H Q5.

its lineitem records. Then, for each batch in turn, we

inserted its records.

We ran this computation using two database sys-

tems: (1) using a popular open-source database9, by

rerunning the query after each insertion, and (2) using

our incremental implementation, where we declare the

query as a view.

We show results for TPC-H query 5, which is a 6-

way join that we selected as representative of the set

of TPC-H queries. We did not use indexes with the

database, because we found that they made the overall

computation slower.

Figure 7 shows the time taken to process each batch.

As expected, ignoring the absolute performance, and

looking just at trends, the data shows that re-executing

queries on an increasing dataset slows down as the total

data size increases, whereas incremental computation

performance remains steady.

9.2 Latency, throughput, and input change size

Latency is the time between submitting a change and

obtaining a result. Observed latency is a function of

both query complexity and the size of the internal state,

so latency will change as system state grows.

For relatively simple queries, as described in Sec-

tion §9.3, while running in steady state, the latency of

a transaction changing a single input row is in the order

of tens to hundreds of microseconds, proving that our

engine can be used for very low latency applications.

Throughput is the number of records that can be

processed in a time unit. DBSP is synchronous and

blocking: for every input change, the pipeline does not

accept any other inputs until it has produced the output

9 Because it’s hard to make a fair comparison, we won’t
specify the database.

Feldera.com
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for all views. This suggests that latency is the inverse

of throughput.

There is an additional degree of freedom: the size

of an input transaction. In several scenarios there is a

choice: (1) when a pipeline is started and is ingesting

the initial state of a large database (backfilling), or (2)

when processing data from streaming sources, without

clear transaction boundaries.

As Nikolic has observed before [80], there is a rela-

tively tight relationship between the latency of updat-

ing a view, the throughput, and the size of the input

changes. Nikolic finds that in DBToaster the optimal

value is somewhere between 1K and 10K tuples. Our

experiments confirm this. The exact optimum value de-

pends on the query and data distribution. Figure 8

shows some typical measurements for Nexmark query

q5. Latency grows monotonically with input batch size,

but the optimum throughput is obtained for batches of

2K-20K records.
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9.3 Macrobenchmarks

There are no standard benchmark suites for IVM. In

this section we use an atypical benchmark suite, Nex-

mark [91], which was designed for benchmarking stream-

ing systems. The benchmark is driven by a synthetic

data generator, modeling an online auction site along

with a suite of queries against the streams. Nexmark is

already implemented for other streaming database sys-

tems, notably for Flink [30,71], a widely used stream

processing system. Nexmark is an unusual benchmark,

since the data is append-only, and thus grows unbounded.

The required internal state would also grow unbounded

if the input is assumed to be arbitrary. However, given

some weak assumptions about the ordering of the in-

puts, these queries can be implemented using finite

state using a garbage-collection mechanism that deletes

internal state which cannot influence any future out-

puts. We leave this subject for a future paper. This

kind of benchmarks can only be implemented using a

DBSP-like model of computation, where the output is a

stream of changes (and not the full views, which would

also grow unbounded).

We compare DBSP against Flink on the Nexmark

benchmark, which consists of 23 queries. We show re-

sults for the queries that Flink and DBSP both support.

We omitted q6 because there was no Flink implemen-

tation, and q10 because we could not make Flink’s im-

plementation for it work. DBSP does not support q11
because DBSP does not yet support session windows.

We ran both the Flink and DBSP implementations

on the same machine, which has a 64-core, 128-thread

Threadripper 3990X CPU and 256 GB RAM, with Fe-

dora Core 40 as the operating system. We present re-

sults for 100 million Nexmark events (input records),

which is a moderate number.

DBSP runs as a single process with 16 worker threads,

and otherwise with default settings, matching the num-

ber of workers used for Flink. We ran DBSP both with

storage disabled, where DBSP keeps all state in RAM,

and with storage enabled, where DBSP flushes large

batches to secondary storage (see 8.1.2). Enabling stor-

age allows DBSP to work with more state with less

memory use, at some cost in throughput.

We configured the Flink implementation of Nex-

mark with the settings recommended by the upstream

project, running 8 Flink task manager containers, each

allocated 2 cores, and one Flink job manager container.

We tried adjusting Flink and Nexmark settings, but

none of these changes improved Flink performance in a

significant and reproducible way.

DBSP and Flink support reading input from multi-

ple kinds of data sources. For these measurements, we

configured both of them to use their own integrated

Nexmark event generators, rather than pulling them

from Kafka or HTTP or another source. This elimi-

nated network service performance and configuration

as a possible source of variability.

Figure 9 reports our measurements. We show 3 bars

for DBSP: the first (red) is using hand-written Rust

code based on the DBSP runtime, running in memory;

the second (orange) bar is written in SQL and runs

in memory, while the third (blue) bar shows the SQL

program using secondary storage.

Throughput.

Figure 9(a) shows the normalized throughput of DBSP

versus Flink with RocksDB (which is always 1); the last



DBSP: Automatic Incremental View Maintenance for Rich Query Languages 23

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Q0 Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q9 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Mean

Ti
m

es
 fa

st
er Speedup vs Flink DBSP in Rust

SQL
SQL+storage
Flink+hashmap
Flink+RocksDB

0

5

10

15

20

25

30

35

40

45

Q0 Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q9 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

G
iB

Nexmark query

Memory consumption

Fig. 9 (top) Average normalized throughput with respect to Flink (higher is better), and (bottom) peak memory consumption
(lower is better), in GiB (230 bytes). The workload comprises the Nexmark queries that DBSP and Flink support in common,
over 100,000,000 events.

group is the geometric mean. With storage disabled,

DBSP is up to 17× faster than Flink, with a geomet-

ric mean of 2× faster on average. As queries get more

complicated, DBSP’s advantage over Flink grows by a

much larger factor. We also notice that there is still a

roughly 2 × gap to cover between the performance of

hand-written DBSP programs and the code generated

by the SQL compiler.

q13 is an outlier that performs slightly slower in our

system than Flink; with storage enabled, it is slower

than Flink. We are investigating this behavior. With

q13 excluded, every remaining query runs at least 1.4×
faster in DBSP (with or without storage).

Storage generally has a small impact on our through-

put, except for q13, where it has about a 4× penalty.

q0 and other very simple queries are about 1.5× faster.

Peak memory.

Figure 9(b) shows peak memory consumption, as re-

ported as the operating system resident set size (RSS),

for the Flink or DBSP processes. In our case this is a

single process; for Flink, it is the sum of the RSS in the

8 task manager containers. In the measurements we did

not include the cost incurred by the control plane in ei-

ther case (in Feldera’s system, the pipeline manager;

in Flink, the job manager). DBSP uses between 0.03×

and 2.6× as much memory of Flink, with a geometric

mean of 0.24×.
q0 and several other queries use 2 GiB or less mem-

ory with our implementation, but over 17 GiB with

Flink. These queries are linear, and do not require any

state, or only minimal state, so DBSP does not allocate

much memory. Flink runs under the Java Virtual Ma-

chine, which might cause it to allocate a high minimum

amount of memory.

Most queries use less memory in our system than in

Flink. Storage reduces the RAM use significantly.

10 Related work

Incremental view maintenance [29,24,54,34,53,35]

is a much studied problem in databases. A survey of

results for Datalog queries is present in [76]. The stan-

dard approach is as follows: given a query Q, discover

a “delta query”, a “differential” version ∆Q that satis-

fies the equation: Q(d+∆d) = Q(d) +∆Q(d,∆d), and

which can be used to compute the change for a new in-

put reusing the previous output. DBToaster introduced

recursive IVM [10,65,80], where the incrementalization

process is repeated for the delta query. Our definition of

IVM is subtly different from the above one, as IVM is

defined as a stream computation, which is well-defined

and can be computed for any query.
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[21] describes an early implementation in Oracle 8,

which handles a limited set of queries. Many custom al-

gorithms were published for various classes of queries:

e.g. [50,70] for various classes of joins, [66] for positive

nested relational calculus, [55] for relational and aggre-

gate operators; [63] is optimized for triangle queries;

DYN [59,60,61] focuses on acyclic conjunctive queries:

instead of keeping the output view materialized they

build data structures that allow efficiently querying the

output views. PAI maps [8] are specially designed for

queries with correlated aggregations. q-hierarchical que-

ries [23] admit very efficient update algorithms. [85]

discusses non-distributive aggregate functions. [64] uses

primary key information to compress the representation

of the deltas, and using an “update” operator that is

similar to our “upsert” operator. AJU [93] and [89] fo-

cus on using foreign key information to optimize query

plan generation. These techniques are only sound in the

absence of deletions and updates; our implementation

uses these optimizations as well. Some algorithms apply

to sets, some work for multisets [51]. Many of these for-

malisms look very complicated because they deal with

“insertions”, “deletions”, and “update” changes sepa-

rately. Z-sets are a much more compact tool for describ-

ing such algorithms. In some sense the DBSP theory,

through the chain rule, enables us to reuse all of these

results (and any future schemes designed for particu-

lar classes of subqueries): given a good implementation

strategy for a particular query plan it can be reused as

a subplan in any query which uses that particular plan.

DBSP as described implies an “eager” execution

model: it constantly maintains the entire contents of

any number of views, even if no one really wants to

inspect the views. In contrast, “lazy” models [56] only

build part of the views when the views are inspected.

Such models have the potential to be more efficient. A

simple way to implement a “lazy” model using DBSP

is to essentially accumulate all input changes as Z-sets
and apply the incremental algorithm only when the out-

put view is queried. Between “lazy” and “eager” one

can place “snapshot” views, which are updated period-

ically [37]. Snowflake offers all these models [11].

DBSP is a bottom-up system, which always pro-

duces eagerly the changes to the output views. Instead

of maintaining the output view entirely, DBSP pro-

poses generating deltas as the output of the computa-

tion (similar to the kSQL [62] EMIT CHANGES queries).

The idea that both inputs and outputs to an IVM sys-

tem are streams of changes seems trivial, but this is

key to the symmetry of our solution: both in our defini-

tion of IVM (3.1), and the fundamental reason that the

chain rule exists — the chain rule is the one that makes

our structural induction IVM algorithm possible.

Several IVM algorithms for Datalog-like languages

use counting based approaches [40,77] that maintain

the number of derivations of each output fact: DRed [54]

and its variants [31,95,88,67,72,15], the backward-for-

ward algorithm and variants [77,57,76]. DBSP is more

general, and our incrementalization algorithm handles

arbitrary recursive queries and generates more efficient

plans for recursive queries in the presence of arbitrary

updates (especially deletions, where competing approach-

es may over-delete). Interestingly, the Z-sets weights in
DBSP are related to the counting-number-of-derivations

approaches, but our use of the dist operator shows that

precise counting is not necessary.

Picallo et al. [14] provide a general solution to IVM

for rich languages. Unlike their proposal, DBSP requires

a group structure on the values operated on; this as-

sumption has two major practical benefits: it simpli-

fies the mathematics considerably (e.g., Picallo uses

monoid actions to model changes), and it provides a

general, simple algorithm for incrementalizing arbitrary

programs. The downside of DBSP is that one has to find

a suitable group structure (e.g., Z-sets for sets) to “em-

bed” the computation. Picallo’s notion of “derivative”

is not unique: they need creativity to choose the right

derivative definition, we need creativity to find the right

group structure.

Finding a suitable group structure has proven easy

for relations (both [65] and [48] use Z-sets to uniformly

model data and insertions/deletions), but it is not obvi-

ous how to do it for other data types, such as sorted col-

lections, or tree-shaped collections (e.g., XML or JSON

documents) [44]. An intriguing question is “what other

interesting group structures could this be applied to

besides Z-sets?” Papers such as [81] explore other pos-

sibilities, such as matrix algebra, linear ML models, or

conjunctive queries.

DBSP can also model window and stream database

queries [16,6] such as CQL queries. [19] proposes us-

ing SQL to express both standard database queries and

streaming queries; it also proposes some extensions to

SQL specific to streaming systems. The DBSP theory

allows us to more precisely understand the classes of

queries that cannot be expressed in SQL. A SQL query

is a function of the state of the database; in other words,

a SQL query cannot provide different results based on

the order of insertions of tuples in a table. Streaming

systems however can. DBSP also enables us to general-

ize and simplify the architecture of existing streaming

systems; for example, we believe that the “timestamps”

attached by streaming systems to “events” do not need

any special treatment.

[25] implemented a verified IVM algorithm for a par-

ticular class of graph queries called Regular Datalog,
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with an implementation machine-checked in the Coq

proof assistant. Their focus is on a particular algorithm

and the approach does not consider other SQL opera-

tors, general recursion, or custom operators (although

it is modular in the sense that it works on any query

by incrementalizing it recursively). Furthermore, for all

queries a deletion in the input change stream requires

running the non-incremental query to recover. We for-

mally verify the theorems in our paper, which are much

broader in scope, but not our implementations.

DBSP is also related to Differential Dataflow (DD) [75,

79,36] and its theoretical foundations [7]. DD’s com-

putational model is more powerful than DBSP, since

it models time values as part of an arbitrary lattice.

In fact, DD is the only other framework which we are

aware of that can incrementalize recursive queries as

efficiently as DBSP does. In contrast, our model uses

either “linear” times, or nested time dimensions via the

modular lifting transformer (↑). DBSP can express both

incremental and non-incremental computations. Most

importantly, DBSP comes with Algorithm 1, a syntax-

directed translation that can convert any expressible

query into an incremental version — in DD users have

to assemble incremental queries manually using incre-

mental operators. materialize.com offers a product that

automates incrementalization for Postgres SQL queries

based on DD. The Differential Datalog [87] project com-

piles Datalog to DD. Unlike DD, DBSP is a modular

theory, which easily accommodates the addition of new

operators: as long as we can express a new operator

as a DBSP circuit, we can (1) define its incremental

version, (2) apply the incrementalization algorithm to

obtain an efficient incremental implementation, and (3)

be confident that it composes with any other operators.

Many custom streaming systems have been imple-

mented: Storm [90], Spark Streaming [96], Flink [30],

Samza [82], Beam [12], Kafka Streams [92], and many

have adopted SQL dialects, e.g., Spark Structured Stream-

ing [18], Spark SQL, KSQL [62]. These systems usually

sacrifice some of the nice properties of database systems

in order to compute efficiently over unbounded streams.

These systems may only support restricted classes of

queries. We believe that in the future databases will in-

corporate the best features of streaming systems, and

that DBSP shows one way this can be achieved.

[11,13] describe the Snowflake incremental and stream-

ing capabilities. In Snowflake “streams” are database

table that store the history of changes to a table. Dy-

namic tables are views which are periodically refreshed,

at user-specified intervals. These can be updated either

incrementally or using batch recomputation; the sys-

tem chooses a strategy based on the refresh period. The

views provide snapshot isolation, which is similar to the

DBSP consistency model.

The pg ivm [52] project offers an open-source Post-

gres module which adds IVM capabilities. The sup-

ported set of queries has some significant restrictions.

The DBSP model is simple enough so it can be im-

plemented in a few hundred lines of Python [38].

11 Conclusions

11.1 Adoption

Traditional databases could in principle be retrofitted

to use the algorithms in this paper, but the existing

query engines are not built around structures that can

represent negative changes (like Z-sets), so this effort

will require a significant redesign.

Moreover, we argue that databases should not only

compute views incrementally, but should use “changes”

as the fundamental data structure to communicate with

their environment: a database service should offer the

following API: users register to receive notifications for

changes in one or more views. Then, for any transaction

committed, each user receives a notification containing

the list of changes for the all the views they registered.

Databases today do not have convenient mechanism

for reporting changes to the outside world. In fact, en-

tire industries have sprung up around the concept of

Change Data Capture [1], which is building ad-hoc so-

lutions for extracting changes from databases, usually

by inspecting the write-ahead transaction log.

11.2 Summary

We have introduced DBSP, a model of computation

based on infinite streams over commutative groups. In

this model streams are used for 3 different purposes:

(1) to model consecutive snapshots of a database, (2)

to model consecutive changes (deltas, or transactions)

applied to a database and changes of a maintained view,

(3) to model consecutive values of loop-carried variables

in recursive computations.

We have defined an abstract notion of incremental

computation over streams, and defined the incremen-

talization operator ·∆, which transforms an arbitrary

stream computation Q into its incremental version Q∆.

The incrementalization operator has some very nice al-

gebraic properties, which gave us a general algorithm

for incrementalizing many classes of complex queries,

including arbitrary recursive queries.

We believe that DBSP can form a solid foundation

for a theory and practice of streaming incremental com-

putation. As a proof, we have built a SQL compiler that

can essentially incrementalize arbitrary queries.
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