
DBSP: Incremental Computation on Streams and Its
Applications to Databases

Mihai Budiu
Feldera

mbudiu@feldera.com

Tej Chajed
Univ. of Wisconsin-Madison

chajed@wisc.edu

Frank McSherry
Materialize Inc.

mcsherry@materialize.com

Leonid Ryzhyk
Feldera

leonid@feldera.com

Val Tannen
University of Pennsylvania
val@seas.upenn.edu

ABSTRACT
We describe DBSP, a framework for incremental computa-
tion. Incremental computations repeatedly evaluate a func-
tion on some input values that are “changing”. The goal
of an efficient implementation is to “reuse” previously com-
puted results. Ideally, when presented with a new change to
the input, an incremental computation should only perform
work proportional to the size of the changes of the input,
rather than to the size of the entire dataset.

In databases “incremental computation” is known as In-
cremental View Maintenance (IVM); IVM has long been a
central problem of database theory and practice. Many so-
lutions have been proposed for restricted classes of compu-
tation or of changes, but we are seeking a general solution.

We start by defining incremental computations as compu-
tations on data streams, i.e., sequences of data values, by
borrowing ideas from Digital Signal Processing.

Using these tools, we give a general solution to the incre-
mental computation problem in 4 steps: (1) we describe a
simple but expressive language called DBSP for describing
computations over data streams; (2) we give a new math-
ematical definition of incremental computation for DBSP
programs; (3) we give a general algorithm for converting
any DBSP program into an incremental program. The al-
gorithm reduces the problem of incrementalizing a complex
query to the problem of incrementalizing the primitive op-
erations that compose the query. Finally, (4) we show that
practical database query languages, such as SQL and Dat-
alog, can be directly implemented on top of DBSP, using
primitives with efficient incremental implementations. As a
consequence, we obtain a general recipe for efficient IVM for
essentially arbitrary queries written in all these languages.

1. INTRODUCTION

1.1 Incremental computation
Incremental view maintenance (IVM) is an important and

well-studied problem in databases [14]. The IVM problem

Copyright is held by the owner/author(s). Publication rights licensed to
the VLDB Endowment. This is a simplified version of the paper enti-
tled DBSP: Automatic Incremental View Maintenance for Rich Query Lan-
guages, published in PVLDB, Vol. 16, Issue 7, ISSN 2150-8097 [5]. DOI:
https://doi.org/10.14778/3587136.3587137
.

can be stated as follows: we are given a large database DB
(say 1 billion records) and a view V , described by a query
Q. The goal of IVM is to keep the contents of V up-to-date
in response to changes of the database.

As a concrete example, consider the following view defini-
tion statement in SQL: CREATE VIEW V AS SELECT * FROM

T WHERE Age >= 10. In this example the query Q defin-
ing the view V is SELECT * FROM T WHERE Age >= 10. The
view V always contains all the rows of table T whose value
for the column Age is greater than or equal to 10.

In general a query is a function applied to the database
state: V = Q(DB). A näıve solution re-executes query Q
every time the database changes, illustrated in the following
diagram. Time is the horizontal axis; the horizontal arrows
labeled with ∆ depict changes to the database, which we
assume are much smaller than the database itself (e.g., a
change could touch perhaps 100 records). The “up” arrows
show the re-evaluation of Q for each database snapshot.

Time

ΔDB[1] ΔDB[2] ΔDB[3]

𝑄 𝑄 𝑄 𝑄

Changes (Δ)

1B rows

100 rows

V[1] V[2] V[3] V[4]

DB[1] DB[2] DB[3] DB[4]

The naive solution is expensive. After the first version
of the view has been constructed, an ideal algorithm would
compute only changes to the view ∆V doing workO(|∆DB|).
Ideally, we want to construct a new query Q∆ with the
property that ∆V = Q∆(∆DB), i.e., Q∆ can compute the
change of the view from the change of the database:

𝑄 𝑄Δ 𝑄Δ 𝑄Δ

ΔDB[1] ΔDB[2] ΔDB[3]ΔDB[0]

ΔV[1] ΔV[2] ΔV[3]

V[1] V[2] V[3] V[4]

DB[1] DB[2] DB[3] DB[4]

We call Q∆ the incremental version of Q. If one thinks
of Q∆ as a function of ∆DB, one can show that the ideal
solution as described above is impossible to reach.

In this paper we propose a new way to defineQ∆, as a form
of computation on streams. Our model is inspired by Digital
Signal Processing DSP [16], applied to databases, hence the
name DBSP. Q∆ can be very efficient. As for traditional
database queries, the performance of Q∆ depends both on
the query Q but also on the actual data that the query is
applied to. Informally, Q∆ built by our algorithm, is faster

than Q by a factor of O(|DB|/|∆DB|). In practice this may
be an improvement of several orders of magnitude. For our
example above |DB| ≈ 109 and |∆DB| ≈ 102, this can make
Q∆ 10 million times faster!

Instead of treating the database as a large changing ob-
ject, we model it as a sequence or stream of database snap-
shots. Similarly, consecutive view snapshots form a stream.
DBSP is a simple programming language computing on
streams; inputs and outputs are streams of arbitrary values.

The DBSP language has only 4 operators. However, it
can express a rich set of computations on streams, includ-
ing repeated computations (similar to the repeated queries
Q above), recursive computations that compute fixed points
(like Datalog programs), streaming computations, and in-
cremental computations (which we define shortly). The full
paper [5] gives a precise mathematical description of DBSP,
this presentation is simplified to convey the main intuitions.
We omit the related work section from this presentation.

The central result of this paper is Algorithm 4.1 which,
given a DBSP program that computes on a stream of val-
ues, mechanically transforms it into an incremental DBSP
program that computes on a stream of changes.

DBSP is not tied to databases in any way; it is in fact a
Turing-complete language that can be used for many other
purposes. But it works particularly well in the area of
databases, for two reasons:
• DBSP operates on values from a commutative group.

Databases can be modeled as a commutative group.
• DBSP reduces the problem of incrementalizing a com-

plex program to the problem of incrementalizing each prim-
itive operation that appears in the program. For databases
there are known efficient incremental implementations for
all primitive operations.

1.2 Circuits and Streams
In this paper we use circuit diagrams to depict programs.

In a circuit a rectangle represents a function, and an arrow
represents an input or output value. The following diagram
shows a function f consuming two inputs i (input 0) and j
(input 1) and producing one output o = f(i, j):

f
0

1

i
j

o

Most of the functions we deal with are commutative, so we
can skip inputs label, displaying the circuit above as:

i
j

f s

Functions, and their circuits, can be composed, as in the
following example for the function o = g(s) + (f(s)× s):

s

f × +

g

o

We say that two circuits are equivalent if they compute
the same function. We use the symbol ∼= to indicate cir-
cuit equivalence. For example, we have the following circuit
equivalence (where ◦ is function composition):

s g f o ∼= s f ◦ g o (*)

1.3 Streams
The core notion of DBSP is the stream. Given a set A,

a stream of values from A is an infinite sequence of values

from A. SA denotes the set of all streams with values from
A. We write s[t] for the t-th element of the stream s. Think
of t as the “time” and of s[t] ∈ A as the value of the stream
s “at time” t. We show streams as a sequence of boxes, with
time from right to left : e.g., the stream s[t] = t is:

· · · 3 2 1 0
←−−−−−−−−−−−−−−

time

A stream operator is a function that computes on streams
and produces streams. In general we use “operator” for
streams, and “function” for computations on “scalar” values.

We use arrows with a double head to depict streams. The
following diagram shows a stream operator T consuming two
input streams s0 and s1, producing one output stream s:

T
0

1

s0
s1

s

We write s = T (s0, s1). Given a function f : A → B, we
define a stream operator ↑f : SA → SB (read as “f lifted”)
by applying function f to each input value independently:

· · · d c b a ↑f · · · f(d) f(c) f(b) f(a)

To simplify the notation, we write a + b for streams a, b
instead of a(↑+)b; we also write −a instead of (↑−)a.

1.4 Databases as streams
We generally think of streams as sequences of “small” val-

ues, such as insertions or deletions in a database. However,
we also treat the whole database as a stream of database
snapshots. We model a database as a stream DB. Time is
not wall-clock time, but counts the transactions applied to
the database. Since transactions are linearizable, they have
a total order. DB[t] is the snapshot of the database con-
tents after t transactions have been applied. This notation
is apparent in the diagrams in Section 1.1.

Database transactions also form a stream ∆DB, this time
a stream of changes, or deltas, that are applied to the database.
The values of this stream are defined by (∆DB)[t] = DB[t]−
DB[t− 1], where “−” stands for the difference between two
databases, a notion that we will soon make more precise.
The ∆DB stream can be produced from the DB stream
by the stream differentiation operator D; this operator pro-
duces as its output the stream of changes from its input
stream; we have thus D(DB) = ∆DB.

Conversely, the database snapshot at time t is the cumu-
lative result of applying all transactions up to t: DB[t] =
∆DB[0] + ∆DB[1] + . . . + ∆DB[t]. The stream operator
I is defined to produce each output by adding up all pre-
vious inputs. We call I stream integration, the inverse of
differentiation. The following diagram shows the relation-
ship between the streams ∆DB and DB:

∆DB I DB D ∆DB

A view in this model is also a stream. Suppose query Q
defining a view V . For each snapshot of the database stream
we have a snapshot of the view: V [t] = Q(DB[t]). A view
is thus just a lifted query: V = (↑Q)(DB).

Armed with these basic definitions, we can precisely define
IVM. What does it mean to maintain a view incrementally?
A maintenance algorithm needs to compute the changes to
the view given the changes to the database. Given a query
Q, a key contribution of this paper is the definition of its
incremental version Q∆, using stream integration and dif-
ferentiation, depicted graphically as:

∆DB I ↑Q D ∆V
DB V

Q∆

Mathematically: Q∆ = D◦(↑Q)◦I. The incremental version
of a query Q is a streaming operator Q∆ which computes di-
rectly on changes and produces changes. The incremental
version of a query is thus always well-defined. The above
definition gives us one way to compute a query incremen-
tally, but applying it naively produces an inefficient execu-
tion, since it reconstructs the database at each step. It is
in fact as bad as the naive solution. In Section 3 we show
how we can optimize the implementation of Q∆. The key
property is that the we can “push” the .∆ operator “down”
in a query plan: (Q1 ◦Q2)

∆ = Q1
∆ ◦Q2

∆.
Armed with this general theory of incremental computa-

tion, in Section 4 we show how to model relational queries
in DBSP. This immediately gives us a general algorithm
to compute the incremental version of any relational query.
These results were previously known, but they are cleanly
modeled by DBSP. Section 5 shows how programs contain-
ing recursion can be implemented and incrementalized in
DBSP. For example, given an implementation of transitive
closure in the natural recursive way, our algorithm produces
a program that efficiently maintains the transitive closure of
a graph as nodes and edges are added and deleted.

1.5 Contributions
This work makes the following contributions:

(1) We introduce DBSP, a simple but expressive language
for streaming computation. DBSP gives an elegant formal
foundation unifying the manipulation of streaming and in-
cremental computations.
(2) An algorithm for incrementalizing any streaming compu-
tation expressed in DBSP that handles arbitrary insertions
and deletions from any of the data sources.
(3) An illustration of how DBSP can model various classes of
practical queries, such as relational algebra, nested relations,
aggregations, and Datalog.
(4) The first general and machine-checked theory of IVM. All
the theoretical results in the original version of this paper [5]
have been checked [7] using the Lean proof assistant [8].
(5) A practical open-source implementation of this theory as
a runtime and a SQL compiler.

2. STREAM OPERATORS
For the rest of this paper we require the set of values A of

a stream SA to form a commutative group, with operations
+, −, and a 0 (zero) value. The plus defines what it means
to add new data, while the minus allows us to compute
differences (deltas). We show later that this requirement is
not a problem for using DBSP in the context of databases.
Stream operators are very powerful mathematically, but

in DBSP we restrict ourselves to a very small subset. All
DBSP computations are causal [4]: the output at time t
is produced immediately after all inputs up at time t have
been received; the output at time t cannot depend on inputs
arriving after t.

The following circuit equivalence tells us that we can lift
a circuit by lifting each of its functions separately:

s ↑g ↑f o ∼= s ↑(f ◦ g) o (**)

The delay operator z−1 produces an output stream by

delaying its input by one step (and starting with a zero)1:

· · · d c b a z−1 · · · c b a 0

A very important property of the delay operator is that it
produces the first output before having received the first
input, and it produces the second output before having re-
ceived the second input, etc.

We define the differentiation operator as a composition of

several other operators: D(s) def
= s− z−1(s), shown as:

s + D(s)

z−1 −

If s is a stream, then D(s) is the stream of changes of s; a
value in the output is the difference between two consecutive
values in the input. As an example:

D(· · · 1 2 1 0) =

· · · 1 2 1 0 − z−1(· · · 1 2 1 0) =

· · · 1 2 1 0 − · · · 2 1 0 0 =

· · · -1 1 1 0

The integration operator is given by the following circuit:

s + I(s) = o

z−1

While this definition may seem strange, because the output
stream is used to compute itself, the use of the delay in
the “feedback” loop ensures that only previous values of the
output are used in computing the current one. Using the
notation o = I(s) to make formulas more readable, we can
see the contents of stream o is produced step by step:

o[0] = s[0] + (z−1(o))[0] = s[0] + 0 = s[0]

o[1] = s[1] + (z−1(o))[1] = s[1] + o[0] = s[1] + s[0]

o[2] = s[2] + (z−1(o))[2] = s[2] + o[1] = s[2] + (s[1] + s[0])

In general, I(s)[t] = o[t] =
∑

i≤t s[i]. Examples:

I(· · · 3 2 1 0) = · · · 6 3 1 0

I(· · · -1 1 1 0) = · · · 1 2 1 0 .

Integration and differentiation are inverses of each other:
while D computes the changes of a stream, I reconstitutes
the original stream given the stream of changes. I and D
“cancel out” when applied in sequence:

s I D o ∼= s o ∼= s D I o

3. INCREMENTAL VIEW MAINTENANCE
The results in this section are not specific to databases,

they hold for any stream computations, but we hint about
their applicability for databases.

Given a stream operator S : SA → SB we define the
incremental version of S as:

∆s I S D ∆o
s o

S∆

1This bizarre name comes from digital signal processing.

If S computes on a stream s, then S∆ computes on a
stream of changes to s. If S produces a stream o, then
S∆ produces the stream of changes to o. Note that this
definition does not require S to be a lifted function.

For an operator with multiple inputs and outputs we de-
fine the incremental version by applying I to each input,

and D to each output, e.g.: T∆(a, b)
def
= D(T (I(a), I(b))).

S∆ has many nice properties:
The chain rule states that (Q1 ◦Q2)

∆ = Q1
∆ ◦Q2

∆, i.e.,
these circuits are equivalent:

∆i I Q1 Q2 D ∆o ∼=
∆i I Q1 D I Q2 D ∆o ∼=

∆i Q1
∆ Q2

∆ ∆o

In the database world, we can read this as: to incremental-
ize a composite query you can incrementalize each sub-query
independently. This gives us a simple deterministic recipe
reducing the incremental version of an arbitrary query to
the incremental version of its primitive operators.

The cycle rule states that these circuits are equivalent:

∆s I T D ∆o

z−1
∼=

∆s T∆ ∆o

z−1

(We have omitted the labels on the inputs of T .) In other
words, the incremental version of a feedback loop around a
query is just the feedback loop with the incremental query
for its body. This result will be useful for recursive queries.

We call an operator S linear if it has the property that
S(a+ b) = S(a)+S(b) (where + is the addition of streams).
For a linear operator S we have S∆ = S. This is very useful
because many primitive database operations can be imple-
mented as linear operators: selection, projection, filtering,
grouping, parts of aggregation are all linear. Moreover, the
following operators are linear: −, z−1, I, D, ↑f if f is a
linear function.

We call an operator T with two inputs bilinear if it dis-
tributes over stream addition: T (a+b, c) = T (a, c)+T (b, c),
and T (a, c + d) = T (a, c) + T (a, d). (Similar to multiplica-
tion’s distributivity over addition.) In databases intersec-
tion, joins, and Cartesian products are bilinear.

Using infix notation, for a bilinear operator × we have:

(∆a×∆b)∆ =

(∆a×∆b + z−1(I(∆a))×∆b + ∆a× z−1(I(∆b)) =

∆a×∆b+ z−1(a)×∆b+∆a× z−1(b)

If we ignore the delay operators in this equation we recover
the well-known formula for join delta queries, e.g.,[15].

∆a I

∆b I

× D ∆o ∼=

∆a

∆b

I

×

I

z−1

z−1

×

×

+ ∆o

What is the intuition behind this diagram? Let us con-
sider the case of Cartesian product a × b. The incremental
product has inputs ∆a = D(a) and ∆b = D(b). What hap-
pens when we add a row x to relation a (i.e., ∆a = x)?
The new row x will appear in the output change combined
with every row in the previous version of the full relation
b. The operator I(∆b) in fact computes relation b from the
stream ∆b of changes, and z−1 applied to this value gives

us its previous version. So the bottom × operator computes
x× z−1(b) = ∆a× z−1(I(∆b)), the change produced by the
new row x. The top × operator performs the symmetric
operation for the changes of the b relation. The middle ×
operator produces the results of changes to both inputs.

4. IVM FOR THE RELATIONAL ALGEBRA
In this section we apply the results on incremental com-

putation to relational databases. As explained in the intro-
duction, our goal is to efficiently compute the incremental
version of any relational query Q.

However, we face a technical problem: we said that streams
require their values to belong to a commutative group, and
relational databases in general are not commutative groups,
since they operate on sets. Fortunately, there is a well-
known tool in the database literature which converts set
operations into group operations by using Z-sets (also called
z-relations [12]) to represent sets.

4.1 Z-sets
Z-sets generalize database tables: think of a Z-set as a

table where each row has an associated integer weight, pos-
sibly negative. This weight indicates how many times the
row belongs to the table.

The following table shows an example Z-set with three
rows. The first row has value joe and weight 1. We do not
show rows with weight 0.

Row Weight
joe 1

mary 2
anne -1

Z-sets generalize sets and multisets: a set can be repre-
sented as a Z-set by associating a weight of 1 with each
element. Multisets (also called “bags” in the database liter-
ature) are Z-sets where all weights are positive. Crucially,
Z-sets can also represent changes to sets and bags. Negative
weights represent rows that are being removed.

We can define three operations on Z-sets with values of a
given type: (1) zero (a Z-set with all weights 0) (2) negation:
just negate all weights; (3) plus: add up the weights of the
rows that have the same value. Using these operations Z-sets
are a commutative group.

We define the function distinct on Z-sets. This function’s
output is a Z-set where all rows of the input with negative
weights are removed, and all positive weights are changed
to 1. For example, the distinct of the above Z-set is:

Row Weight
joe 1

mary 1

Notice that distinct “removes” duplicates from multisets,
and it also eliminates rows with negative weights.

4.2 Implementing relational operators
The fact that relational algebra can be implemented by

computations on Z-sets has been shown before, e.g. [13].
The translation of the relational operators to functions com-
puting on Z-sets is shown in Table 1. The functions (π, σ,
▷◁, ×) are the standard relational operators projection, se-
lection, join, Cartesian product. The first row of the table

Table 1: Implementation of SQL relational set operators as circuits computing on Z-sets.
Operation SQL example DBSP circuit Details

Composition
SELECT ... FROM
(SELECT ... FROM I) I CI CO O

CI circuit for inner query,
CO circuit for outer query.

Union

(SELECT * FROM I1)
UNION
(SELECT * FROM I2)

I1

I2

+ distinct O
distinct eliminates duplicates. An implementation of
UNION ALL does not need the distinct .

Projection
SELECT DISTINCT I.c
FROM I I πc distinct O

Project each row with its weight unchanged. Add up
weights of identical rows.

Filtering
SELECT * FROM I
WHERE P(...) I σP O

P is a predicate applied to each row. Select each row
separately. If the row is selected, preserve the weight,
else make the weight 0.

Cartesian
product

SELECT I1.*, I2.*
FROM I1, I2

I1

I2

× O
The weight of the pair (a,b) is the product of the the
weights of a and b.

Equi-join

SELECT I1.*, I2.*
FROM I1 JOIN I2
ON I1.c1 = I2.c2

I1

I2

▷◁c1=c2 O
Multiply the weights of the rows that appear in the
output.

Intersection

(SELECT * FROM I1)
INTERSECT
(SELECT * FROM I2)

I1

I2

▷◁ O
Special case of equi-join when both relations have the
same schema.

Difference

SELECT * FROM I1
EXCEPT
SELECT * FROM I2

I1

I2 −
+ distinct O

distinct removes rows with negative weights from the
result.

shows that a composite query is translated recursively: im-
plement the sub-queries, and connect them with an arrow.
This gives us a recipe for translating an arbitrary relational
query plan into a circuit.
The translation is fairly straightforward, but many oper-

ators require the application of a distinct to produce sets.
For example, a ∪ b = distinct(a+ b), a \ b = distinct(a− b).
Filtering on Z-sets works exactly as filtering on sets, but pre-
serves the weight of each value. Selection on Z-sets works
similar to selection on sets, but also preserves the weights.
This is a faithful implementation of the relational alge-

bra — the underlying mathematical theory that underlies
modern databases — using Z-sets. This implementation
produces an abundance of distinct operators, but there are
known optimizations for removing some of them.
The following functions in Table 1 are linear: σ, π,−,+.

The following functions are bilinear: ×, ▷◁. In fact, the only
non-linear function is distinct . In consequence, all these
functions (lifted) have very efficient incremental versions.
To explain why these functions are linear, consider the

filtering query from the introduction (WHERE). What is the
change in the output when we add a new row to the input?
It is sufficient to check the predicate for the new row. If the
predicate returns true, the new row is added to the output.
So the change in the output only depends on the change in
the input, and not on the actual contents of the input. This
is what makes the operation linear.

4.3 Incremental view maintenance
Let us consider a relational query Q defining a view V .

To the following algorithm builds a DBSP circuit for Q∆:

Algorithm 4.1 (incremental view maintenance).

(1) Translate Q into a circuit using the rules in Table 1.
(2) [Optional] Remove some distinct operations.
(3) Lift the whole circuit, converting it to a circuit operating
on streams, using formula (**) in Section 2.
(4) Incrementalize the circuit “surrounding” it with I and D.
(5) Apply the chain rule recursively, producing a circuit us-
ing only primitive incremental operations.

This algorithm is deterministic; the running time is pro-
portional to the number of operators in the query. Step
(2) generates an equivalent circuit, with fewer distinct op-
erators. Step (3) yields a circuit that consumes a stream
of complete database snapshots and outputs a stream of
view snapshots. Step (4) yields a circuit that consumes a
stream of database changes and outputs a stream of view
changes; however, the internal operation of the circuit is
non-incremental, as it rebuilds the complete database us-
ing integrations. Step (5) optimizes the circuit by replacing
each primitive operator with its incremental version. It es-
sentially adds a I ◦ D pair on every edge in the circuit, and
then uses the chain rule to replace each I ◦Q ◦ D with Q∆.
After running this algorithm, all primitives operations are

replaced by their incremental versions. The only non-linear
operation from Table 1 is distinct . However, there is an effi-
cient incremental implementation for distinct (this construc-
tion has also been known before, but we show it in terms of
streaming operations), shown in the following diagram:

∆d (↑distinct)∆ ∆o ∼=
∆d I z−1

↑H ∆o

The functionH has two inputs: the left input is the change
∆d, while the top input is the full set, obtained as an in-
tegral of the changes. H detects whether the weight of a
row in the full set is changing sign (from negative to pos-
itive on a row insertion, and from positive to negative on
a deletion) when the row appears in a new change. Here
is the intuition why distinct is efficiently incrementalizable:
only tuples that appear in the input change ∆d can appear
in the output change ∆o, so the work performed is O(|∆d)|.
The implementation needs to maintain the entire input set
(similar to joins) in order to discover whether an item is new
or not. That is the purpose of the I operator.

The algorithm reduces the problem of incremental execu-
tion of a query plan to the incremental execution of sub-
plans/primitive operators. However, this algorithm works
even if we use a primitive P for which no efficient incre-
mental version is known: we can always use the inefficient
“brute-force” implementation given by P∆ = D ◦ ↑P ◦ I.

4.4 Relational Query Example
Let’s apply the IVM algorithm to the following SQL query:

CREATE VIEW v AS
SELECT DISTINCT a.x, b.y FROM (

SELECT t1.x, t1.id FROM t1 WHERE t1.a > 2
) a JOIN (

SELECT t2.id, t2.y FROM t2 WHERE t2.s > 5
) b ON a.id = b.id

Step 1: Create a DBSP circuit to represent this query
using the rules in Table 1; this circuit is essentially a dataflow
implementation of the query:

t1 σa>2 distinct πx,id distinct

t2 σs>5 distinct πy,id distinct

▷◁id=id πx,y distinct V

Step 2: eliminate distinct operators, producing an equiv-
alent circuit: (we omit the subscripts to save space):
t1 σ π

t2 σ π

▷◁ π distinct V

This step is used in some traditional database optimizers.
Note that some arrows that represented sets in the original
circuit may represent multisets in the optimized circuit.

Step 3: lift the circuit to compute over streams; all arrows
are doubled and all functions are lifted:
t1 ↑σ ↑π

t2 ↑σ ↑π

↑ ▷◁ ↑π ↑distinct V

Step 4: incrementalize circuit, obtaining a circuit that
computes over changes; this circuit receives changes to re-
lations t1 and t2 and for each such change it produces the
corresponding change in the output view V:

∆t1 I ↑σ ↑π

∆t2 I ↑σ ↑π

↑ ▷◁ ↑π ↑distinct D ∆V

Step 5: apply the chain rule to rewrite the circuit as a
composition of incremental operators; notice the use of .∆

for all operators:

∆t1 (↑σ)∆ (↑π)∆

∆t2 (↑σ)∆ (↑π)∆
(↑ ▷◁)∆ (↑π)∆ (↑distinct)∆ ∆V

Use the linearity of σ and π to simplify this circuit (notice
that all linear operators no longer have a ·∆):

∆t1 ↑σ ↑π

∆t2 ↑σ ↑π

(↑ ▷◁)∆ ↑π (↑distinct)∆ ∆V

Finally, replace the incremental join and the incremental
distinct , with their incremental implementations, obtaining
the following circuit (we have used a slightly different ex-
pansion for the join than the one shown previously; this one
only contains two integrators):

∆t1 ↑σ ↑π

∆t2 ↑σ ↑π

I

I z−1

↑ ▷◁

↑ ▷◁

+ ↑π I z−1

↑H ∆V

Notice that the resulting circuit contains three integration
operations: two from the join, and one from the distinct . It
also contains two join operators. However, the work per-
formed by each operator for each new input is proportional
to the size of its input change.

4.5 SQL
SQL is richer than the relational algebra. It can per-

form operations on multisets, and it offers operations such
as GROUP BY and aggregations. All of these can be modeled
as operations on Z-set-like structures. Moreover, GROUP BY

is a linear operation. Some aggregations are “almost” linear,
but other, such as MIN, require maintaining the full input
set, similar to distinct , to properly handle deletions. See
the full paper and the technical report [6] for more details.

5. RECURSIVE QUERIES
Recursive queries are very useful in many applications.

For example, graph algorithms such as graph reachability
or transitive closure are naturally expressed using recur-
sive queries. We introduce two simple DBSP stream op-
erators that are used for expressing recursive query evalua-
tion. These operators allow us to build circuits implement-
ing looping constructs, which are used to iterate computa-
tions until a fixed-point is reached (i.e., the output of some
operator does not change anymore).

5.1 Creating and destroying streams
The delta function δ : A → SA produces a stream from a

scalar value. Given an input value x, the output stream is x
followed by an infinite number of zeros. The input of δ has
a single arrow, while the output has a double arrow.

x δ · · · 0 0 0 x

We define the function
∫

: SA → A. Its input stream is
required to eventually reach the value 0 and never change
afterwards. This function just sums up all the values in the
input stream and returns a single result when it encounters
the first 0 in the input stream. Notice that the input is a
double arrow, while the output is a single arrow. E.g.,:

· · · 0 3 2 1
∫

6

(This function is also an integrator; its relationship to the I
operator is the same one as the relationship of the definite
integral [1] to the indefinite integral [2] in mathematics.)

δ and
∫

are both linear.
So far we have used a tacit assumption that “time” is com-

mon for all streams in a program. For example, when we
add two streams, we assume that they use the same “clock”.
However, the δ operator creates a stream with a “new”, in-
dependent time dimension. We require well-formed circuits
to “insulate” nested time domains by “bracketing” them be-
tween a δ and an

∫
operator:

i δ S
∫

o

S is a streaming operator, but the entire circuit implements
a scalar function, as shown by the single arrowheads.

5.2 Implementing recursive queries
We describe the implementation of recursive queries in

DBSP. SQL can only express very limited recursive queries,
so here we model Datalog queries. In general, a Datalog
program defines a set of mutually recursive relations.

We describe the algorithm to build DBSP circuits for the
simple case of a single-input, single-output recursive query.
The input of our algorithm is a Datalog query of the form
O = R(x,O), where R is a relational, non-recursive query,
producing a set as a result, but whose output O is also
an input. The output of the algorithm is a DBSP circuit
which evaluates this recursive query producing output O
when given the input x. In this section we build a non-
incremental circuit, which evaluates the Datalog query; in
Section 5.3 we derive the incremental version of this circuit.

Algorithm 5.1 (recursive queries).
(1) Implement the non-recursive relational query R as de-
scribed in Section 4 and Table 1; this produces an acyclic
circuit whose inputs and outputs are Z-sets:

x

O

R O

In all these diagrams we show input 0 of operator R on the
left, and input 1 on the bottom.
(2) Lift this circuit to operate on streams:

x

O

↑R O

Construct ↑R by lifting each operator individually, using
equation (**) in Section 2.
(3) Build a cycle, connecting the output to the corresponding
recursive input via a delay:

x ↑R O

z−1

(4) “Bracket” the circuit as follows:

x δ I ↑R D
∫

O

z−1

The left input of ↑R is an infinite stream of identical values
· · · x x x x . The feedback cycle in this circuit is a
while loop that iterates until no changes are observed (i.e., a
fixed-point of R is reached); the outputs produced by ↑R will
be: in sequence R(x, 0), R(x,R(x, 0)), R(x,R(x,R(x, 0))),
etc.. The D operator yields the set of new changes computed
by each iteration of the loop. When the set of new changes
becomes zero, the fixed point has been reached.

Please note that this is not a streaming circuit: the in-
put and output arrows are both simple. This is a circuit
which receives a single input value and produces a single
corresponding output. The circuit uses streams internally
to implement the fixed point iteration.

A concrete example for a transitive closure query is Sec-
tion 8.2 of our technical report [6].

When R, the body of the loop, implements a Datalog
programs computing on a finite data domain, this program
can be proven to always terminate and compute the least
fixed point that contains x. For an arbirary function R, the
resulting circuit may loop forever for some inputs.

In fact, this circuit implements the standard Datalog näıve
evaluation algorithm (e.g., see Algorithm 1 in [11]). Notice
that the inner part of the circuit is the incremental form
of another circuit, since it is sandwiched between I and D
operators. Using the cycle rule we can rewrite this circuit:

x δ (↑R)∆
∫

O

z−1

This circuit implements semi-näıve evaluation (Algorithm 2
in [11]). We have just proven the correctness of semi-näıve
evaluation as an immediate consequence of the cycle rule!

5.3 Incremental recursive programs
In Section 2–4 we showed how to incrementalize a rela-

tional query by compiling it into a circuit, lifting the circuit
to compute on streams, and applying the ·∆ operator. In
Section 5 we showed how to compile a recursive query into
a circuit that employs incremental computation internally,
to compute the fixed point. Here we combine these results
to construct a circuit that evaluates a recursive query incre-
mentally. The circuit receives a stream of updates to input
relations, and for every update recomputes the fixed point.
To do this incrementally, it preserves the stream of changes
to recursive relations produced by the iterative fixed point
computation, and adjusts this stream to account for the
modified inputs. Thus, every element of the input stream
yields a stream of adjustments to the fixed point computa-
tion, using nested streams.

In the same way streams are infinite vectors, streams of
streams are infinite matrices. We denote streams of streams
with triple arrows in our diagrams.

The same way we lift functions to produce stream oper-
ators, we can lift stream operators to produce operators on
streams of streams. A scalar function f can be lifted twice
to produce an operator between streams of streams:

i ↑↑f o

The operator z−1 on nested streams delays “rows” of the
matrix, while ↑z−1 delays “columns”.

We have seen in equation (**) that lifting a graph entails
lifting all operators. This extends to graphs with cycles, e.g:

i ↑I o ∼=

i + o

↑z−1

This gives us the ability to lift entire circuits, including
circuits computing on streams and having feedback edges.
With this machinery we can now apply Algorithm 4.1 to
arbitrary circuits, even circuits for recursive relations.
Step 1: Start with the “semi-naive” circuit:

x δ0 (↑R)∆
∫

O

z−1

Step 2: nothing to do for distinct .
Steps 3 and 4: Lift the circuit and incrementalize:

∆x I ↑δ0 ↑(↑R)∆ ↑
∫

D ∆O

↑z−1

Step 5: apply the chain rule and the linearity of ↑δ0 and ↑
∫
:

∆x ↑δ0 (↑(↑R)∆)
∆ ↑

∫
∆O

↑z−1

This is the incremental version of a recursive query. A con-
crete example for a transitive closure query is Section 9.1 of
our technical report [6].

6. IMPLEMENTATION
DBSP does not make any simplifying assumptions that

would make it impractical. In fact, Feldera Inc. has built
an open-source implementation of DBSP as a query engine
in Rust [9]; and also a compiler from SQL to DBSP [10].
This compiler handles essentially the entire SQL language.
The compiler generates execution plans for incrementally
maintaining any number of views defined in SQL.

Plan quality. A relational algebra query can be imple-
mented by multiple plans, each with a different data-dependent
cost. The input of Algorithm 4.1 is a non-incremental query
plan, produced by a query planner. The algorithm produces
an incremental plan that is “similar” to the input plan.

Standard query planners use cost-based heuristics and
data statistics to optimize plans. A generic IVM planner
does not have this luxury, since the plan must be generated
before any data has been fed to the query. Nevertheless, all
standard query optimization techniques, perhaps based on
historical statistics, can be used to generate the query plan
that is supplied to our Algorithm. The question of optimal-
ity in the context of IVM plan is a much more difficult topic
than optimization of ad-hoc queries, since the chosen IVM
plan will execute for all future database updates.

Tradeoffs. Incremental computation is not free. It is in
fact a trade-off between time and space. In the cost anal-
ysis we have to consider both the time and the space used
by each operator. While many incremental database oper-
ations can be implemented using work proportional to the
size of the changes, and no storage overhead, several classes
of database operations, such as joins, “distinct”, and aggre-
gates can be implemented efficiently only using additional
storage in the form of indexes. The size of these indexes is
proportional to the size of the total data in the database
(and not just to the size of the changes) — and since some

indexes are over intermediate relations, they can even ex-
ceed the size of the original database. In DBSP the indexes
are represented by delay operators z−1. In fact, the delay
operator (and its lifted variant ↑z−1) are the only operators
that maintains state. This is also the only state that needs
to be persisted, checkpointed, or migrated to make DBSP
computations fault-tolerant.

DBSP is an “eager” or “top-down” execution model: it
constantly maintains the entire contents of any number of
views, even if no one really wants to inspect the views. In
contrast, “lazy” or “bottom-up” models only build part of
the views when the views are inspected. Such models have
the potential to be more efficient. Eager models can be
converted into lazy ones if something is known about the
class of operations that will be executed against the views.

Start-up costs. When a new view is installed, the IVM
system must compute the first change, which is the same as
the initial contents of the view. This computation is in pro-
portional to the size of the whole database. This is known as
the “backfill” problem. Likewise, changes to the definition of
a view or the data schema require recomputing the affected
queries from scratch.

Adopting DBSP. Traditional databases do not offer effi-
cient IVM implementations for arbitrary queries. Databases
could in principle be retrofitted to use the algorithms in this
paper, but the existing query engines are not built around
structures that can represent negative changes (like Z-sets),
so this effort will require a significant redesign.

Moreover, we argue that databases should not only com-
pute views incrementally, but should use “changes” as the
fundamental data structure to communicate with their envi-
ronment: a database service should offer the following API:
users register to receive notifications for changes in one or
more views. Then, for any transaction committed, each user
receives a notification containing the list of changes for the
all the views they registered. Databases today do not have
convenient mechanism for reporting changes to the outside
world. In fact, entire industries have sprung up around the
concept of Change Data Capture [3], which is building ad-
hoc solutions for extracting changes from databases, usually
by inspecting the write-ahead transaction log.

7. CONCLUSIONS
We have introduced DBSP, a model of computation based

on infinite streams over commutative groups. In this model
streams are used for 3 purposes: (1) to model consecutive
snapshots of a database, (2) to model consecutive changes
(deltas, or transactions) applied to a database and changes
of a maintained view, (3) to model consecutive values of
loop-carried variables in recursive computations.

We have defined an abstract notion of incremental com-
putation over streams, and defined the incrementalization
operator ·∆, which transforms an arbitrary stream com-
putation Q into its incremental version Q∆. The incre-
mentalization operator has some very nice algebraic prop-
erties, which gave us a general algorithm for incremental-
izing many classes of complex queries, including arbitrary
recursive queries.

We believe that DBSP can form a solid foundation for a
theory and practice of streaming incremental computation.

8. REFERENCES
[1] https://en.wikipedia.org/wiki/Integral.

Retrieved March 2024.

[2] https://en.wikipedia.org/wiki/Antiderivative.
Retrieved March 2024.

[3] https:

//en.wikipedia.orag/wiki/Change_data_capture.
Retrieved March 2024.

[4] Causal system.
https://en.wikipedia.org/wiki/Causal_system.
Retrieved March 2024.

[5] M. Budiu, T. Chajed, F. McSherry, L. Ryzhyk, and
V. Tannen. DBSP: Automatic incremental view
maintenance for rich query languages. In Proceedings
of the VLDB Endowment (VLDB), volume 16, pages
1601–1614, Vancouver, Canada, August 2023. Best
paper award.

[6] M. Budiu, F. McSherry, L. Ryzhyk, and V. Tannen.
DBSP: A language for expressing
incremental view maintenance for rich query languages.
https://github.com/feldera/feldera/blob/main/papers/spec.pdf,
December 2022.

[7] T. Chajed. DBSP formalization.
https://github.com/tchajed/dbsp-theory, Dec.
2022.

[8] L. de Moura, S. Kong, J. Avigad, F. van Doorn, and
J. von Raumer. The Lean theorem prover. In
International Conference on Automated Deduction
(CADE-25), Berlin, Germany, 2015.

[9] Feldera Inc. DBSP Rust crate.
https://crates.com/crates/dbsp. Retrieved March
2024.

[10] Feldera Inc. SQL to DBSP compiler.
https://github.com/feldera/feldera/tree/main/

sql-to-dbsp-compiler. Retrieved March 2024.

[11] S. Greco and C. Molinaro. Datalog and logic
databases. Synthesis Lectures on Data Management,
7(2):1–169, 2015.

[12] T. J. Green, Z. G. Ives, and V. Tannen. Reconcilable
differences. Theory of Computing Systems,
49(2):460–488, 2011.

[13] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In Symposium on Principles of
Database Systems (PODS), page 31–40, Beijing,
China, June 11-14 2007.

[14] A. Gupta, I. S. Mumick, et al. Maintenance of
materialized views: Problems, techniques, and
applications. IEEE Data Eng. Bull., 18(2):3–18, 1995.

[15] C. Koch. Incremental query evaluation in a ring of
databases. In Symposium on Principles of Database
Systems (PODS), page 87–98, Indianapolis, Indiana,
USA, 2010.

[16] L. R. Rabiner and B. Gold, editors. Theory and
Application of Digital Signal Processing. Prentice-Hall,
1975.

