Overlook: Differentially Private Exploratory Visualization
for Big Data

Pratiksha Thaker

Stanford University
prthaker@stanford.edu

Udi Wieder

VMware Research
uwieder@vmware.com

ABSTRACT

Data exploration systems that provide differential privacy
must manage a privacy budget that measures the amount of
privacy lost across multiple queries. One effective strategy to
manage the privacy budget is to compute a one-time private
synopsis of the data, to which users can make an unlimited
number of queries. However, existing systems using synopses
are built for offline use cases, where a set of queries is known
ahead of time and the system carefully optimizes a synopsis
for it. The synopses that these systems build are costly to
compute and may also be costly to store.

We introduce Overlook, a system that enables private data
exploration at interactive latencies for both data analysts
and data curators. Overlook enables fast computation of
private synopses using the idea of a “virtual synopsis,” which
represents a potentially large private synopsis implicitly us-
ing a pseudorandom function that is evaluated on demand.
Overlook uses a synopsis that is simple but fast and has
accuracy comparable to other state-of-the-art synopses, re-
quiring 0.5 seconds or less to generate a histogram over 60
GB of data — only 2.5x slower than the equivalent public
histogram. Together, these allow Overlook to provide a rich,
interactive, and fast visual query interface that allows users
to explore private data with minimal storage overhead — tens
of bytes — on the server.

1 Introduction

Privacy has become a key issue for all organizations that
collect personal data, from companies to government entities.
As a result, a number of systems [11, 5, 9] have emerged
that work towards making differential privacy practical and
accessible to these users.

Unfortunately, these systems are currently challenging for
organizations to configure and use, in part due to the privacy
budget that determines how many queries can be made to a
dataset privately, and with what accuracy. At a high level,
current DP systems fall into two categories. Systems such as
PINQ [11] and PSI [5] ask users to select a privacy budget,
e, for each query they execute. This requires non-expert
users to reason about tradeoffs between the value of ¢ and
the resulting accuracy. On the other hand, systems such as
PrivateSQL [9] generate a synopsis data structure that can
answer all queries within a specific class of queries, given a
total privacy budget €. These systems are more suitable for
exploratory analysis and for public access, but they are also

Mihai Budiu
VMware Research
mbudiu@vmware.com

Parikshit Gopalan
VMware Research

pgopalan@vmware.com
Matei Zaharia
Stanford University
matei@cs.stanford.edu

ILvEwW big data spreadsheet
Suggestions
[Testatasets Load Test Manage Load data

IFlights (private)

1. Flights (private) £ Av2-x

Egon View

%=324

¥ = 400.03K
Count = 412476
i = 99.8%

[+1,064,328 points, 50 buckets
loperation took 0.787 seconds

Figure 1: The Overlook user interface allows users to in-
teract with visualizations in a natural, useful way, without
having to reason about privacy loss budgets.

challenging to use. Constructing the synopsis requires solving
a time-consuming optimization problem to minimize the
error it will produce for a specific query workload, requiring
several minutes for common mechanisms such as DAWA [10]
and MWEM [6]. This time can become prohibitive when
generating a large number of synopses, for instance when a
data curator is evaluating many parameter settings to find
one that will deliver good utility for a dataset. Moreover,
the synopsis can consume a large amount of space, scaling
with the size of the underlying domain, making it costly for
large datasets.

In this paper, we present Overlook, a system that makes
differential privacy practical and fast for one of the most
common types of data analysis: visual data exploration.
Overlook provides a natural interface for users to explore
data through interactive charts, such as histograms and
heat maps, at interactive latencies. In addition, Overlook’s
curator interface allows data curators to interactively explore
different settings of privacy parameters prior to publishing
the data.

The key idea in Overlook is a “virtual synopsis” data
structure that compresses the representation of a synopsis
into just a few bytes using a pseudo-random function (PRF).
Rather than evaluating and storing an entire synopsis ahead
of time, Overlook can use this virtual synopsis to compute
noise corresponding to a particular query on the fly, with

Trusted backend

1
' o
. Curator ja%
: 4
1
1
1
1 Privacy
° | parameters
4 Histogram query istogram query
T > >
'I 'I—I' < ;
Private response Quantized response

: Virtual synopsis

Untrusted
frontend

B

A

({0

1
1
1
1
1
1
1
1
1
Servers with raw data :
1
1
1
1
1
1
1
1
1
1

Figure 2: Overlook architecture.

minimal performance overhead. Thanks to this design, both
the data curator and data analysts can run queries at a
similar speed to their existing query engine without expensive
storage overheads. Moreover, adding a new dataset is as
simple as generating a new PRF key: no offline optimization
or synopsis generation is required.

Overlook offers a rich privacy-aware visual query interface
built on virtual synopses. Unlike existing private visualiza-
tion systems, the interface is interactive and fast: it can
generate a private histogram on nearly 60 GB of data in 0.5
seconds, no more than 2.5x slower than its public counter-
part. Moreover, users do not need to reason about privacy
budgets: they can make unlimited queries to the private syn-
opsis, and the amount of noise added for privacy is conveyed
through intuitive confidence intervals. Overlook’s frontend
is based on the open source Hillview system [1], but we
demonstrate that the private frontend can run on top of
both Hillview as well as an unmodified SQL DBMS.

Overlook is open source at http://github.com/vmware/
hillview'.

2 System overview

Figure 2 shows the architecture of the Overlook system.
A data analyst interacts with Overlook through a browser
interface that allows them to issue queries to the Overlook
root node. The root dispatches the query to the backend,
applies a privacy mechanism to the returned result, and
returns the private result to the user.

The root also stores relevant privacy parameters used to
compute the private response to a histogram query. The
trusted data curator can make changes to these privacy
parameters until the dataset is published, at which point
the privacy parameters as well as the dataset must become
immutable. The untrusted data analyst can only access pub-
lished data through the private results of histogram queries.
The privacy parameters are assumed to be public and visible
to both the data curator and the data analyst. The privacy
parameters are discussed further in Section 2.2.

In Section 2.1, we describe Overlook’s user-facing interface
and supported visualizations. In Section refsec:curator, we
describe the curator interface that data curators can use to
explore privacy parameters interactively.

2.1 User interface

The data curator and data analyst both access Overlook
through interfaces that are extensions of the Hillview data vi-

LOverlook’s Ul is built on the Hillview frontend, and as such
has been merged into the Hillview codebase. Documentation
on the privacy-specific features can be found at https://
github.com/vmware/hillview/blob/master/privacy.md.

Figure 3: Histogram plot with CDF curve overlaid. Con-
fidence intervals are plotted for each bar, and the count is
displayed as a range rather than a single value.

| T
SRR Ty
! Wl
111 (. il
=]y 1 ST "

'
=] TH) 1y e LV B B e g AR
T [i 1 1 1
o | 1T |

LI 1

ny J It
1 BT N oy b 1

8 I
| T

o ol 111001) " L1l

1

| nom—————

TR T T LT T
L

s wim [1 [

I | | | 1

ESRL 1LY w SR INCETITT | 1 !

. [LLIET

ol L N [1

i 11 1 ' 1]
<100 11 [

Figure 4: Heatmap on two columns. The color shows
the count for each combination of values. Values with low
confidence are hidden.

sualization system [1], which provides a browser interface for
interacting with charts and data. The result of a histogram
query is displayed as an interactive plot. Additional queries
can be made by zooming in using the mouse by selecting an
interval, which issues a new histogram query to the backend.

Note that, while the frontend is an extension to Hillview,
Overlook can be used with any backend that supports count
queries.

2.1.1 Supported visualizations

Overlook’s main primitive is a histogram query. This primi-
tive can be applied to create a variety of useful visualizations:
e Histogram queries over a column (with numeric or categor-
ical data). The visual presentation can be a bar chart with
confidence intervals, as shown in Figure 3, or, for example, a
pie chart.

e Cumulative distributions functions (CDF) over a column
(numeric or categorical). Figure 3 shows a histogram plot
with an overlaid CDF curve.

e Histogram queries over a pair of columns, each of which
can be either numeric or categorical. This can be visually
presented as a heat map as in Figure 4, or for example a
trellis plot of 1-dimensional histograms.

One important feature of Overlook is that it displays
estimates of uncertainty about the data. For 1-dimensional
histograms, this is in the form of 99% confidence intervals.

In addition to histograms, Overlook supports releasing
certain useful counts (“degenerate histograms”) privately:
the number of elements and NULL values in a column, and
the count of distinct values in a column.

2.2 Curator interface

The data curator’s job is to decide which columns and pairs
of columns will be released privately, and to then decide
the privacy level for each of those data releases. Overlook’s
curator Ul helps the data curator make these decisions.
For each set of columns that is to be released privately,
the curator must specify a corresponding privacy policy.

This policy provides Overlook with information about public
values that can be used in the histogram as well as parameters
that are used to instantiate the privacy mechanism. The
curator’s view of the Overlook UI allows the curator to edit
these policy settings and generate sample charts on a dataset
before it is published.

In particular, the curator can specify:

1. The privacy level € for each set of columns to be released.

2. The data range for each histogram, i.e. the minimum and
maximum value to be displayed. These must be public
and uncorrelated with the raw data. For example, for a
histogram over income, the minimum may be 0 and the
maximum 1 million.

3. A quantization for each histogram: a specification of
bucket boundaries. These must be public and uncor-
related with the data. For example, for a histogram
over names, the bucket boundaries may be the letters
‘A’ through ‘Z’, which leak no information about any
individual’s name.

While specifying a policy for every such histogram may
be impractical, Overlook provides some useful default values
for the convenience of the curator. While curators should
be careful to choose parameters that are public and inde-
pendent of the data, we note that the curator’s decisions
may nevertheless leak information because they are made
based on the true underlying dataset. Devising methods to
add differential privacy to this kind of human-in-the-loop
parameter selection is an interesting avenue for future work.

3 Algorithmic Background

In this section, we review the mechanism Overlook uses
for releasing private histograms. In Section 4, we describe
how the synopsis mechanism is implemented efficiently in
Overlook.

We use the standard definition [4] of pure e-differential
privacy in our work. Overlook operates over flat tables, but
can also operate over joins that are materialized in advance.

3.1 Synopsis mechanism

The queries that Overlook targets are one- and two- dimen-
sional histogram queries. To generate synopses for these
classes of queries, Overlook uses a mechanism called the
hierarchical histogram [8, 3]. At a high level, the hierarchical
histogram builds a tree such that nodes higher in the tree
correspond to progressively larger contiguous intervals in the
domain. Each internal node of the tree corresponds to an
interval of the histogram that is the union of its b children,
and the mechanism adds noise with scale Lap(log,(m)/e) to
each internal node. For such a tree with branching factor
b, an arbitrary interval of size ¢ can be computed by taking
the union of only (b — 1) log,(t) nodes: the number of noise
variables now scales logarithmically, rather than linearly, in
the interval size.

A multidimensional rectangle query can be computed by
taking the Cartesian product of its decomposition in each
axis.

Overlook also supports releasing certain counts, such as
counts of NULL or missing values, privately apart from the
histograms. These can be made private simply by perturbing
the count with noise distributed as Lap(1/e) [4]. The data
curator must take into account the additional privacy cost
of releasing these values.

4 Virtual Synopses

An important requirement for releasing a private synopsis
is that random noise is added once, when the synopsis is
constructed, and must not be resampled on future queries
to the synopsis. For the hierarchical histogram mechanism,
this requirement naively would mean that Overlook would
have to store a random sample for every node in the synopsis
tree, a storage overhead that grows linearly in the size of the
domain.

Our solution is to use a cryptographically secure pseudo-
random function (PRF). Informally, a PRF guarantees that,
given a small random key, the PRF output will be indistin-
guishable from a truly random function to a computationally-
bounded adversary [2].

The hierarchical histogram mechanism associates every
interval with a unique decomposition into nodes of a tree.
We use this decomposition as input to the PRF in order
to deterministically sample the same Laplace noise each
time a particular interval is queried, rather than explicitly
instantiating the entire hierarchy of intervals.

Using the PRF, we are able to reduce the storage cost
of the synopsis from linear in the domain size to a small
constant — in fact, only the 32 bytes required to store the
key associated with a given table.

5 Evaluation

In this section, we briefly review key highlights of Overlook’s
performance, and demonstrate that adding differential pri-
vacy does not substantially slow down the system or change
its underlying scaling properties. In particular, the overall
slowdown from privacy is no greater than 2.5x. Generating
noise for any given interval query takes millseconds and re-
quires minimal memory overhead required to store the PRF
key associated with a synopsis, in comparison to existing
algorithms whose computation and memory requirements
scale with the data or data domain size.

We benchmark Overlook on a dataset of 20 years of U.S.
flights [12]. This dataset contains 14 numeric and categorical
columns over a range of data distributions and domain sizes
(varying from 7 to over 4000). The total dataset size is 58.2
GB.

5.1 Slowdown relative to public data

We first evaluate how much differential privacy causes queries
to slow down relative to queries on public data. In order
to understand the slowdown, we make two measurements
for each backend: first, the time required to quantize the
dataset, and second, the time required to answer a quantized
histogram query with noise added.

Figure 5 shows the average slowdown when plotting his-
tograms and heat maps on the U.S. flights dataset using
both the Hillview and MySQL backends. The slowdown is
below 2.5x for all configurations. In all cases, the majority
of the slowdown is a result of the quantization step. This
is intuitive: where each data point would initially have re-
quired one operation to add it to the appropriate bucket,
quantization adds an additional operation to round the point
to its nearest value in the public column domain.

5.2 Scaling

The Overlook frontend can be used with any SQL backend.
However, the Hillview distributed backend is powerful as it
retains Hillview’s ability to scale to large datasets.

L 2a- w24
= =
3 22- ERTS
8 8
S 20- S 20-
2 2
S s S 18-
° °
£ e e
H H
S S
3 H
B 1z2- B1z2-
@ @
o 1o N
Hlllvxew H|Ilv|ew MysQL MySQL Hillview Hilliew MySQL MySQL
d quantized quantized quantized quantized quantized
with noise with noise with noise with noise

(a) Histogram slowdown. (b) Heatmap slowdown.

Figure 5: Slowdown relative to raw (non-private) databases
for histograms and heat maps. In all cases, privacy adds at
most a 2.5x performance penalty.

8000 /\ —— 14000~
12000~

—e— Public
—+— Quantized

+— Quantized with noise

8000
4000
o, //4\<

3000

8

—+— Public
10000 —+— Quantized

< Quantized with noise

8

Cumulative time (ms)
8

Cumulative time (ms)

2 4 ; 5 0w om 2 4 6 8 10 2 1
Numberofmachmes Numberofmachmes

(a) Histogram scaling. (b) Heat map scaling.
Figure 6: Average time to generate histograms for columns
in the flights dataset as the number of machines grows. The
data size grows with the number of machines, so the runtime
remains constant.

We evaluate scaling using clusters of 1, 2, 4, 8,and 15
Amazon EC2 machines. The data is split equally among
the machines in the cluster, so for linear scaling we expect
the time required for each query to be roughly the same
regardless of the number of machines. We measure time to
compute charts once the data is already in memory.

In Figure 6 we show our measurements that evaluate the
time breakdown for computing histograms over the U.S.
flights dataset. Each point corresponds to the total time
required to compute a histogram or heat map for every
column or pair of columns. The overhead of privacy is the
same roughly 2x overhead as in Figure 5, but privacy does
not change the scaling behavior of the system at all, as
expected.

5.3 Comparison to existing systems

We use DPBench [7] to evaluate the time required to gener-
ate a synopsis with the hierarchical histogram mechanism
against the time required for comparable synopses. We stress
that these times are not trivially comparable as DPBench is
primarily an accuracy benchmark that is not optimized for
performance.

We evaluate each method on a one-dimensional all-zeros
dataset of increasing size, on a workload of all intervals (the
workload that Overlook targets). We evaluate seven mecha-
nisms in the literature: the baseline “identity” mechanism
[4], the binary hierarchical histogram [3, 8], the hierarchical
histogram with adaptive branching [8], DAWA [10], MWEM
[6], Privelet [13], and StructureFirst [14].

Figure 7 shows the results of the benchmark. Figure 7a
shows that MWEM and DAWA are by far the most expensive
algorithms, followed by StructureFirst. The remaining algo-
rithms run in under one second, so we plot these separately
in Figure 7b. While the time required for the hierarchical

—e— Identity

—e— H2

+— HB

—*— DAWA
MWEM
Privelet
StructureFirst

—+— Identity
T Hz
“ HB
—o— Privelet

8

o
H

.

o - -

Synopsis generation time (seconds)
Synopsis generation time (seconds)

o 1000 2000 3000 4000
Domain size ° 1000 2000 3000 4000
Domain size

(a) Time required to generate

synopses as the domain size in-
creases.

(b) Generation time for faster
synopses.

Figure 7: Time required to generate synopses using various
mechanisms, benchmarked using DPBench. MWEM and
DAWA dominate in the first plot; the second plot shows that
generating hierarchical histograms scales in the domain size,
when not using Overlook’s PRF-based construction.

mechanisms scales linearly in the data size, they are still con-
siderably less expensive to compute than more complicated
workload-aware synopses.

6 References

[1] Hillview: a big data spreadsheet.
http://github.com/vmware/hillview. Retrieved February 2018.

[2] Dan Boneh and Victor Shoup. A graduate course in applied
cryptography. Version 0.5, 2020.

[3] T-H Hubert Chan, Elaine Shi, and Dawn Song. Private and
continual release of statistics. ACM Transactions on
Information and System Security (TISSEC), 14(3):26, 2011.

[4] Cynthia Dwork. Differential privacy. Encyclopedia of
Cryptography and Security, pages 338—340, 2011.

[5] Marco Gaboardi, James Honaker, Gary King, Kobbi Nissim,
Jonathan Ullman, and Salil P. Vadhan. PSI (¥): a private data
sharing interface. CoRR, abs/1609.04340, 2016.

[6] Moritz Hardt and Guy N Rothblum. A multiplicative weights

mechanism for privacy-preserving data analysis. In 2010 IEEE

51st Annual Symposium on Foundations of Computer

Science, pages 61-70. IEEE, 2010.

Michael Hay, Ashwin Machanavajjhala, Gerome Miklau, Yan

Chen, and Dan Zhang. Principled evaluation of differentially

private algorithms using dpbench. In Proceedings of the 2016

International Conference on Management of Data, SIGMOD

Conference 2016, San Francisco, CA, USA, June 26 - July

01, 2016, pages 139-154, 2016.

Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu.

Boosting the accuracy of differentially private histograms

through consistency. Proc. VLDB Endow., 3(1-2):1021-1032,

September 2010.

[9] Tos Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour,
Ashwin Machanavajjhala, Michael Hay, and Gerome Miklau.
Privatesql: A differentially private SQL query engine. PVLDB,
12(11):1371-1384, 2019.

[10] Chao Li, Michael Hay, Gerome Miklau, and Yue Wang. A data-
and workload-aware query answering algorithm for range
queries under differential privacy. PVLDB, 7(5):341-352, 2014.

[11] Frank D McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In Proceedings of
the 2009 ACM SIGMOD International Conference on
Management of data, pages 19-30. ACM, 2009.

[12] US Dept. of Transportation. Airline on-time performance data.
https://transtats.bts.gov/Tables.asp?DB_ID=120. Retrieved
October 2017.

[13] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke.
Differential privacy via wavelet transforms. IEEE Transactions
on knowledge and data engineering, 23(8):1200-1214, 2010.

[14] Jia Xu, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, Ge Yu, and
Marianne Winslett. Differentially private histogram publication.
The VLDB JournalThe International Journal on Very Large
Data Bases, 22(6):797-822, 2013.

[7

8

