
DryadLINQ: A System for General-Purpose Distributed Data-Parallel
Computing Using a High-Level Language

Yuan Yu Michael Isard Dennis Fetterly Mihai Budiu
Úlfar Erlingsson1 Pradeep Kumar Gunda Jon Currey

Microsoft Research Silicon Valley 1joint affiliation, Reykjavík University, Iceland

Abstract

DryadLINQ is a system and a set of language extensions
that enable a new programming model for large scale dis-
tributed computing. It generalizes previous execution en-
vironments such as SQL, MapReduce, and Dryad in two
ways: by adopting an expressive data model of strongly
typed .NET objects; and by supporting general-purpose
imperative and declarative operations on datasets within
a traditional high-level programming language.

A DryadLINQ program is a sequential program com-
posed of LINQ expressions performing arbitrary side-
effect-free transformations on datasets, and can be writ-
ten and debugged using standard .NET development
tools. The DryadLINQ system automatically and trans-
parently translates the data-parallel portions of the pro-
gram into a distributed execution plan which is passed
to the Dryad execution platform. Dryad, which has been
in continuous operation for several years on production
clusters made up of thousands of computers, ensures ef-
ficient, reliable execution of this plan.

We describe the implementation of the DryadLINQ
compiler and runtime. We evaluate DryadLINQ on a
varied set of programs drawn from domains such as
web-graph analysis, large-scale log mining, and machine
learning. We show that excellent absolute performance
can be attained—a general-purpose sort of 1012 Bytes of
data executes in 319 seconds on a 240-computer, 960-
disk cluster—as well as demonstrating near-linear scal-
ing of execution time on representative applications as
we vary the number of computers used for a job.

1 Introduction

The DryadLINQ system is designed to make it easy for
a wide variety of developers to compute effectively on
large amounts of data. DryadLINQ programs are written
as imperative or declarative operations on datasets within
a traditional high-level programming language, using an

expressive data model of strongly typed .NET objects.
The main contribution of this paper is a set of language
extensions and a corresponding system that can auto-
matically and transparently compile imperative programs
in a general-purpose language into distributed computa-
tions that execute efficiently on large computing clusters.

Our goal is to give the programmer the illusion of
writing for a single computer and to have the sys-
tem deal with the complexities that arise from schedul-
ing, distribution, and fault-tolerance. Achieving this
goal requires a wide variety of components to inter-
act, including cluster-management software, distributed-
execution middleware, language constructs, and devel-
opment tools. Traditional parallel databases (which
we survey in Section 6.1) as well as more recent
data-processing systems such as MapReduce [15] and
Dryad [26] demonstrate that it is possible to implement
high-performance large-scale execution engines at mod-
est financial cost, and clusters running such platforms
are proliferating. Even so, their programming interfaces
all leave room for improvement. We therefore believe
that the language issues addressed in this paper are cur-
rently among the most pressing research areas for data-
intensive computing, and our work on the DryadLINQ
system stems from this belief.

DryadLINQ exploits LINQ (Language INtegrated
Query [2], a set of .NET constructs for programming
with datasets) to provide a powerful hybrid of declarative
and imperative programming. The system is designed to
provide flexible and efficient distributed computation in
any LINQ-enabled programming language including C#,
VB, and F#. Objects in DryadLINQ datasets can be of
any .NET type, making it easy to compute with data such
as image patches, vectors, and matrices. DryadLINQ
programs can use traditional structuring constructs such
as functions, modules, and libraries, and express iteration
using standard loops. Crucially, the distributed execu-
tion layer employs a fully functional, declarative descrip-
tion of the data-parallel component of the computation,

which enables sophisticated rewritings and optimizations
like those traditionally employed by parallel databases.

In contrast, parallel databases implement only declar-
ative variants of SQL queries. There is by now a
widespread belief that SQL is too limited for many ap-
plications [15, 26, 31, 34, 35]. One problem is that, in
order to support database requirements such as in-place
updates and efficient transactions, SQL adopts a very re-
strictive type system. In addition, the declarative “query-
oriented” nature of SQL makes it difficult to express
common programming patterns such as iteration [14].
Together, these make SQL unsuitable for tasks such as
machine learning, content parsing, and web-graph anal-
ysis that increasingly must be run on very large datasets.

The MapReduce system [15] adopted a radically sim-
plified programming abstraction, however even common
operations like database Join are tricky to implement in
this model. Moreover, it is necessary to embed MapRe-
duce computations in a scripting language in order to
execute programs that require more than one reduction
or sorting stage. Each MapReduce instantiation is self-
contained and no automatic optimizations take place
across their boundaries. In addition, the lack of any type-
system support or integration between the MapReduce
stages requires programmers to explicitly keep track of
objects passed between these stages, and may compli-
cate long-term maintenance and re-use of software com-
ponents.

Several domain-specific languages have appeared
on top of the MapReduce abstraction to hide some
of this complexity from the programmer, including
Sawzall [32], Pig [31], and other unpublished systems
such as Facebook’s HIVE. These offer a limited hy-
bridization of declarative and imperative programs and
generalize SQL’s stored-procedure model. Some whole-
query optimizations are automatically applied by these
systems across MapReduce computation boundaries.
However, these approaches inherit many of SQL’s disad-
vantages, adopting simple custom type systems and pro-
viding limited support for iterative computations. Their
support for optimizations is less advanced than that in
DryadLINQ, partly because the underlying MapReduce
execution platform is much less flexible than Dryad.

DryadLINQ and systems such as MapReduce are also
distinguished from traditional databases [25] by having
virtualized expression plans. The planner allocates re-
sources independent of the actual cluster used for execu-
tion. This means both that DryadLINQ can run plans
requiring many more steps than the instantaneously-
available computation resources would permit, and that
the computational resources can change dynamically,
e.g. due to faults—in essence, we have an extra degree
of freedom in buffer management compared with tradi-
tional schemes [21, 24, 27, 28, 29]. A downside of vir-

tualization is that it requires intermediate results to be
stored to persistent media, potentially increasing compu-
tation latency.

This paper makes the following contributions to the
literature:
• We have demonstrated a new hybrid of declarative
and imperative programming, suitable for large-scale
data-parallel computing using a rich object-oriented
programming language.

• We have implemented the DryadLINQ system and
validated the hypothesis that DryadLINQ programs can
be automatically optimized and efficiently executed on
large clusters.

• We have designed a small set of operators that im-
prove LINQ’s support for coarse-grain parallelization
while preserving its programming model.

Section 2 provides a high-level overview of the steps in-
volved when a DryadLINQ program is run. Section 3
discusses LINQ and the extensions to its programming
model that comprise DryadLINQ along with simple il-
lustrative examples. Section 4 describes the DryadLINQ
implementation and its interaction with the low-level
Dryad primitives. In Section 5 we evaluate our system
using several example applications at a variety of scales.
Section 6 compares DryadLINQ to related work and Sec-
tion 7 discusses limitations of the system and lessons
learned from its development.

2 System Architecture

DryadLINQ compiles LINQ programs into distributed
computations running on the Dryad cluster-computing
infrastructure [26]. A Dryad job is a directed acyclic
graph where each vertex is a program and edges repre-
sent data channels. At run time, vertices are processes
communicating with each other through the channels,
and each channel is used to transport a finite sequence
of data records. The data model and serialization are
provided by higher-level software layers, in this case
DryadLINQ.

Figure 1 illustrates the Dryad system architecture. The
execution of a Dryad job is orchestrated by a central-
ized “job manager.” The job manager is responsible
for: (1) instantiating a job’s dataflow graph; (2) schedul-
ing processes on cluster computers; (3) providing fault-
tolerance by re-executing failed or slow processes; (4)
monitoring the job and collecting statistics; and (5) trans-
forming the job graph dynamically according to user-
supplied policies.

A cluster is typically controlled by a task scheduler,
separate from Dryad, which manages a batch queue of
jobs and executes a few at a time subject to cluster policy.

Files, TCP, FIFO

job graph data plane

control plane

NS PD PDPD

V V V

Job manager cluster

Figure 1: Dryad system architecture. NS is the name server which
maintains the cluster membership. The job manager is responsible
for spawning vertices (V) on available computers with the help of a
remote-execution and monitoring daemon (PD). Vertices exchange data
through files, TCP pipes, or shared-memory channels. The grey shape
indicates the vertices in the job that are currently running and the cor-
respondence with the job execution graph.

2.1 DryadLINQ Execution Overview

Figure 2 shows the flow of execution when a program is
executed by DryadLINQ.

Client machine

Compile

(1)

(9)

Output
DryadTable

(3)

(2)

ToDryadTable foreach

DryadLINQ

.NET

Output
Tables

Input
tables

Exec
plan

Dryad
Execution

Data center

Results

.NET
Objects

LINQ
Expr

JM

Invoke

(4)

(6)

(5)

(7)

(8)
Vertex
code

Figure 2: LINQ-expression execution in DryadLINQ.

Step 1. A .NET user application runs. It creates a
DryadLINQ expression object. Because of LINQ’s de-
ferred evaluation (described in Section 3), the actual ex-
ecution of the expression has not occurred.

Step 2. The application calls ToDryadTable trigger-
ing a data-parallel execution. The expression object is
handed to DryadLINQ.

Step 3. DryadLINQ compiles the LINQ expression into
a distributed Dryad execution plan. It performs: (a) the
decomposition of the expression into subexpressions,
each to be run in a separate Dryad vertex; (b) the gener-

ation of code and static data for the remote Dryad ver-
tices; and (c) the generation of serialization code for the
required data types. Section 4 describes these steps in
detail.

Step 4. DryadLINQ invokes a custom, DryadLINQ-
specific, Dryad job manager. The job manager may be
executed behind a cluster firewall.

Step 5. The job manager creates the job graph using the
plan created in Step 3. It schedules and spawns the ver-
tices as resources become available. See Figure 1.

Step 6. Each Dryad vertex executes a vertex-specific
program (created in Step 3b).

Step 7. When the Dryad job completes successfully it
writes the data to the output table(s).

Step 8. The job manager process terminates, and it re-
turns control back to DryadLINQ. DryadLINQ creates
the local DryadTable objects encapsulating the out-
puts of the execution. These objects may be used as
inputs to subsequent expressions in the user program.
Data objects within a DryadTable output are fetched
to the local context only if explicitly dereferenced.

Step 9. Control returns to the user application. The it-
erator interface over a DryadTable allows the user to
read its contents as .NET objects.

Step 10. The application may generate subsequent
DryadLINQ expressions, to be executed by a repetition
of Steps 2–9.

3 Programming with DryadLINQ

In this section we highlight some particularly useful and
distinctive aspects of DryadLINQ. More details on the
programming model may be found in LINQ language
reference [2] and materials on the DryadLINQ project
website [1] including a language tutorial. A companion
technical report [38] contains listings of some of the sam-
ple programs described below.

3.1 LINQ
The term LINQ [2] refers to a set of .NET constructs
for manipulating sets and sequences of data items. We
describe it here as it applies to C# but DryadLINQ pro-
grams have been written in other .NET languages includ-
ing F#. The power and extensibility of LINQ derive from
a set of design choices that allow the programmer to ex-
press complex computations over datasets while giving
the runtime great leeway to decide how these computa-
tions should be implemented.

The base type for a LINQ collection is IEnumer-
able<T>. From a programmer’s perspective, this is

an abstract dataset of objects of type T that is ac-
cessed using an iterator interface. LINQ also defines
the IQueryable<T> interface which is a subtype of
IEnumerable<T> and represents an (unevaluated) ex-
pression constructed by combining LINQ datasets us-
ing LINQ operators. We need make only two obser-
vations about these types: (a) in general the program-
mer neither knows nor cares what concrete type imple-
ments any given dataset’s IEnumerable interface; and
(b) DryadLINQ composes all LINQ expressions into
IQueryable objects and defers evaluation until the result
is needed, at which point the expression graph within the
IQueryable is optimized and executed in its entirety on
the cluster. Any IQueryable object can be used as an
argument to multiple operators, allowing efficient re-use
of common subexpressions.

LINQ expressions are statically strongly typed
through use of nested generics, although the compiler
hides much of the type-complexity from the user by pro-
viding a range of “syntactic sugar.” Figure 3 illustrates
LINQ’s syntax with a fragment of a simple example pro-
gram that computes the top-ranked results for each query
in a stored corpus. Two versions of the same LINQ ex-
pression are shown, one using a declarative SQL-like
syntax, and the second using the object-oriented style we
adopt for more complex programs.

The program first performs a Join to “look up” the
static rank of each document contained in a scoreTriples
tuple and then computes a new rank for that tuple, com-
bining the query-dependent score with the static score in-
side the constructor for QueryScoreDocIDTriple. The
program next groups the resulting tuples by query, and
outputs the top-ranked results for each query. The full
example program is included in [38].

The second, object-oriented, version of the example
illustrates LINQ’s use of C#’s lambda expressions. The
Join method, for example, takes as arguments a dataset
to perform the Join against (in this case staticRank) and
three functions. The first two functions describe how to
determine the keys that should be used in the Join. The
third function describes the Join function itself. Note that
the compiler performs static type inference to determine
the concrete types of var objects and anonymous lambda
expressions so the programmer need not remember (or
even know) the type signatures of many subexpressions
or helper functions.

3.2 DryadLINQ Constructs

DryadLINQ preserves the LINQ programming model
and extends it to data-parallel programming by defining
a small set of new operators and datatypes.

The DryadLINQ data model is a distributed imple-
mentation of LINQ collections. Datasets may still con-

// SQL-style syntax to join two input sets:
// scoreTriples and staticRank
var adjustedScoreTriples =
from d in scoreTriples
join r in staticRank on d.docID equals r.key
select new QueryScoreDocIDTriple(d, r);

var rankedQueries =
from s in adjustedScoreTriples
group s by s.query into g
select TakeTopQueryResults(g);

// Object-oriented syntax for the above join
var adjustedScoreTriples =
scoreTriples.Join(staticRank,
d => d.docID, r => r.key,
(d, r) => new QueryScoreDocIDTriple(d, r));

var groupedQueries =
adjustedScoreTriples.GroupBy(s => s.query);

var rankedQueries =
groupedQueries.Select(
g => TakeTopQueryResults(g));

Figure 3: A program fragment illustrating two ways of expressing the
same operation. The first uses LINQ’s declarative syntax, and the sec-
ond uses object-oriented interfaces. Statements such as r => r.key
use C#’s syntax for anonymous lambda expressions.

Partition

Collection

.NET objects

Figure 4: The DryadLINQ data model: strongly-typed collections of
.NET objects partitioned on a set of computers.

tain arbitrary .NET types, but each DryadLINQ dataset is
in general distributed across the computers of a cluster,
partitioned into disjoint pieces as shown in Figure 4. The
partitioning strategies used—hash-partitioning, range-
partitioning, and round-robin—are familiar from paral-
lel databases [18]. This dataset partitioning is managed
transparently by the system unless the programmer ex-
plicitly overrides the optimizer’s choices.

The inputs and outputs of a DryadLINQ computation
are represented by objects of type DryadTable<T>,
which is a subtype of IQueryable<T>. Subtypes of
DryadTable<T> support underlying storage providers
that include distributed filesystems, collections of NTFS
files, and sets of SQL tables. DryadTable objects may
include metadata read from the file system describing ta-
ble properties such as schemas for the data items con-
tained in the table, and partitioning schemes which the
DryadLINQ optimizer can use to generate more efficient
executions. These optimizations, along with issues such

as data serialization and compression, are discussed in
Section 4.

The primary restriction imposed by the DryadLINQ
system to allow distributed execution is that all the func-
tions called in DryadLINQ expressions must be side-
effect free. Shared objects can be referenced and read
freely and will be automatically serialized and distributed
where necessary. However, if any shared object is
modified, the result of the computation is undefined.
DryadLINQ does not currently check or enforce the ab-
sence of side-effects.

The inputs and outputs of a DryadLINQ compu-
tation are specified using the GetTable<T> and
ToDryadTable<T> operators, e.g.:

var input = GetTable<LineRecord>("file://in.tbl");
var result = MainProgram(input, ...);
var output = ToDryadTable(result, "file://out.tbl");

Tables are referenced by URI strings that indicate the
storage system to use as well as the name of the parti-
tioned dataset. Variants of ToDryadTable can simulta-
neously invoke multiple expressions and generate mul-
tiple output DryadTables in a single distributed Dryad
job. This feature (also encountered in parallel databases
such as Teradata) can be used to avoid recomputing or
materializing common subexpressions.

DryadLINQ offers two data re-partitioning operators:
HashPartition<T,K> and RangePartition<T,K>.
These operators are needed to enforce a partitioning on
an output dataset and they may also be used to over-
ride the optimizer’s choice of execution plan. From a
LINQ perspective, however, they are no-ops since they
just reorganize a collection without changing its con-
tents. The system allows the implementation of addi-
tional re-partitioning operators, but we have found these
two to be sufficient for a wide class of applications.

The remaining new operators are Apply and Fork,
which can be thought of as an “escape-hatch” that a pro-
grammer can use when a computation is needed that can-
not be expressed using any of LINQ’s built-in opera-
tors. Apply takes a function f and passes to it an iter-
ator over the entire input collection, allowing arbitrary
streaming computations. As a simple example, Apply
can be used to perform “windowed” computations on a
sequence, where the ith entry of the output sequence is
a function on the range of input values [i, i + d] for a
fixed window of length d. The applications of Apply are
much more general than this and we discuss them fur-
ther in Section 7. The Fork operator is very similar to
Apply except that it takes a single input and generates
multiple output datasets. This is useful as a performance
optimization to eliminate common subcomputations, e.g.
to implement a document parser that outputs both plain
text and a bibliographic entry to separate tables.

If the DryadLINQ system has no further information
about f, Apply (or Fork) will cause all of the compu-
tation to be serialized onto a single computer. More
often, however, the user supplies annotations on f that
indicate conditions under which Apply can be paral-
lelized. The details are too complex to be described in
the space available, but quite general “conditional homo-
morphism” is supported—this means that the application
can specify conditions on the partitioning of a dataset
under which Apply can be run independently on each
partition. DryadLINQ will automatically re-partition the
data to match the conditions if necessary.

DryadLINQ allows programmers to specify annota-
tions of various kinds. These provide manual hints to
guide optimizations that the system is unable to perform
automatically, while preserving the semantics of the pro-
gram. As mentioned above, the Apply operator makes
use of annotations, supplied as simple .NET attributes, to
indicate opportunities for parallelization. There are also
Resource annotations to discriminate functions that re-
quire constant storage from those whose storage grows
along with the input collection size—these are used by
the optimizer to determine buffering strategies and de-
cide when to pipeline operators in the same process. The
programmer may also declare that a dataset has a partic-
ular partitioning scheme if the file system does not store
sufficient metadata to determine this automatically.

The DryadLINQ optimizer produces good automatic
execution plans for most programs composed of standard
LINQ operators, and annotations are seldom needed un-
less an application uses complex Apply statements.

3.3 Building on DryadLINQ

Many programs can be directly written using the
DryadLINQ primitives. Nevertheless, we have begun to
build libraries of common subroutines for various appli-
cation domains. The ease of defining and maintaining
such libraries using C#’s functions and interfaces high-
lights the advantages of embedding data-parallel con-
structs within a high-level language.

The MapReduce programming model from [15] can
be compactly stated as follows (eliding the precise type
signatures for clarity):

public static MapReduce(// returns set of Rs
source, // set of Ts
mapper, // function from T→ Ms
keySelector, // function from M→ K
reducer // function from (K,Ms)→ Rs

) {
var mapped = source.SelectMany(mapper);
var groups = mapped.GroupBy(keySelector);
return groups.SelectMany(reducer);

}

Section 4 discusses the execution plan that is auto-
matically generated for such a computation by the
DryadLINQ optimizer.

We built a general-purpose library for manipulating
numerical data to use as a platform for implementing
machine-learning algorithms, some of which are de-
scribed in Section 5. The applications are written as
traditional programs calling into library functions, and
make no explicit reference to the distributed nature of
the computation. Several of these algorithms need to it-
erate over a data transformation until convergence. In a
traditional database this would require support for recur-
sive expressions, which are tricky to implement [14]; in
DryadLINQ it is trivial to use a C# loop to express the
iteration. The companion technical report [38] contains
annotated source for some of these algorithms.

4 System Implementation

This section describes the DryadLINQ parallelizing
compiler. We focus on the generation, optimization, and
execution of the distributed execution plan, correspond-
ing to step 3 in Figure 2. The DryadLINQ optimizer is
similar in many respects to classical database optimiz-
ers [25]. It has a static component, which generates an
execution plan, and a dynamic component, which uses
Dryad policy plug-ins to optimize the graph at run time.

4.1 Execution Plan Graph
When it receives control, DryadLINQ starts by convert-
ing the raw LINQ expression into an execution plan
graph (EPG), where each node is an operator and edges
represent its inputs and outputs. The EPG is closely re-
lated to a traditional database query plan, but we use
the more general terminology of execution plan to en-
compass computations that are not easily formulated as
“queries.” The EPG is a directed acyclic graph—the
existence of common subexpressions and operators like
Fork means that EPGs cannot always be described by
trees. DryadLINQ then applies term-rewriting optimiza-
tions on the EPG. The EPG is a “skeleton” of the Dryad
data-flow graph that will be executed, and each EPG
node is replicated at run time to generate a Dryad “stage”
(a collection of vertices running the same computation
on different partitions of a dataset). The optimizer an-
notates the EPG with metadata properties. For edges,
these include the .NET type of the data and the compres-
sion scheme, if any, used after serialization. For nodes,
they include details of the partitioning scheme used, and
ordering information within each partition. The output
of a node, for example, might be a dataset that is hash-
partitioned by a particular key, and sorted according to
that key within each partition; this information can be

used by subsequent OrderBy nodes to choose an appro-
priate distributed sort algorithm as described below in
Section 4.2.3. The properties are seeded from the LINQ
expression tree and the input and output tables’ metadata,
and propagated and updated during EPG rewriting.

Propagating these properties is substantially harder in
the context of DryadLINQ than for a traditional database.
The difficulties stem from the much richer data model
and expression language. Consider one of the simplest
operations: input.Select(x => f(x)). If f is a simple
expression, e.g. x.name, then it is straightforward for
DryadLINQ to determine which properties can be prop-
agated. However, for arbitrary f it is in general impos-
sible to determine whether this transformation preserves
the partitioning properties of the input.

Fortunately, DryadLINQ can usually infer properties
in the programs typical users write. Partition and sort key
properties are stored as expressions, and it is often fea-
sible to compare these for equality using a combination
of static typing, static analysis, and reflection. The sys-
tem also provides a simple mechanism that allows users
to assert properties of an expression when they cannot be
determined automatically.

4.2 DryadLINQ Optimizations

DryadLINQ performs both static and dynamic optimiza-
tions. The static optimizations are currently greedy
heuristics, although in the future we may implement
cost-based optimizations as used in traditional databases.
The dynamic optimizations are applied during Dryad job
execution, and consist in rewriting the job graph depend-
ing on run-time data statistics. Our optimizations are
sound in that a failure to compute properties simply re-
sults in an inefficient, though correct, execution plan.

4.2.1 Static Optimizations

DryadLINQ’s static optimizations are conditional graph
rewriting rules triggered by a predicate on EPG node
properties. Most of the static optimizations are focused
on minimizing disk and network I/O. The most important
are:
Pipelining: Multiple operators may be executed in a
single process. The pipelined processes are themselves
LINQ expressions and can be executed by an existing
single-computer LINQ implementation.

Removing redundancy: DryadLINQ removes unnec-
essary hash- or range-partitioning steps.

Eager Aggregation: Since re-partitioning datasets is
expensive, down-stream aggregations are moved in
front of partitioning operators where possible.

I/O reduction: Where possible, DryadLINQ uses
Dryad’s TCP-pipe and in-memory FIFO channels in-
stead of persisting temporary data to files. The system
by default compresses data before performing a parti-
tioning, to reduce network traffic. Users can manually
override compression settings to balance CPU usage
with network load if the optimizer makes a poor de-
cision.

4.2.2 Dynamic Optimizations

DryadLINQ makes use of hooks in the Dryad API to
dynamically mutate the execution graph as information
from the running job becomes available. Aggregation
gives a major opportunity for I/O reduction since it can
be optimized into a tree according to locality, aggregat-
ing data first at the computer level, next at the rack level,
and finally at the cluster level. The topology of such an
aggregation tree can only be computed at run time, since
it is dependent on the dynamic scheduling decisions
which allocate vertices to computers. DryadLINQ au-
tomatically uses the dynamic-aggregation logic present
in Dryad [26].

Dynamic data partitioning sets the number of ver-
tices in each stage (i.e., the number of partitions of each
dataset) at run time based on the size of its input data.
Traditional databases usually estimate dataset sizes stat-
ically, but these estimates can be very inaccurate, for ex-
ample in the presence of correlated queries. DryadLINQ
supports dynamic hash and range partitions—for range
partitions both the number of partitions and the partition-
ing key ranges are determined at run time by sampling
the input dataset.

4.2.3 Optimizations for OrderBy

DryadLINQ’s logic for sorting a dataset d illustrates
many of the static and dynamic optimizations available
to the system. Different strategies are adopted depending
on d’s initial partitioning and ordering. Figure 5 shows
the evolution of an OrderBy node O in the most com-
plex case, where d is not already range-partitioned by
the correct sort key, nor are its partitions individually or-
dered by the key. First, the dataset must be re-partitioned.
The DS stage performs deterministic sampling of the in-
put dataset. The samples are aggregated by a histogram
vertex H, which determines the partition keys as a func-
tion of data distribution (load-balancing the computation
in the next stage). The D vertices perform the actual re-
partitioning, based on the key ranges computed by H.
Next, a merge node M interleaves the inputs, and a S
node sorts them. M and S are pipelined in a single pro-
cess, and communicate using iterators. The number of
partitions in the DS+H+D stage is chosen at run time

O

DS

H

D

M

S

DS

H

D

M

S

DS

D

DS

H

D

M

S

DS

D

M

S

M

S

(1) (2) (3)

Figure 5: Distributed sort optimization described in Section 4.2.3.
Transformation (1) is static, while (2) and (3) are dynamic.

SM

R

G

SM

S

G

R

D

MS

G

R

(1) (2) (3)

X

X

SM

S

G

R

D

MS

G

R

X

SM

S

G

R

D

MS

G

R

X

SM

S

G

R

D

SM

S

G

R

D

MS

G

R

X

SM

S

G

R

D

MS

G

R

X

SM

S

G

R

D

MS

G

R

MS

G

R

map

sort

groupby

reduce

distribute

mergesort

groupby

reduce

mergesort

groupby

reduce

consumer

m
a

p
p

a
rt

ia
l a

g
g

re
g

a
ti

o
n

re
d

u
ce

Figure 6: Execution plan for MapReduce, described in Section 4.2.4.
Step (1) is static, (2) and (3) are dynamic based on the volume and
location of the data in the inputs.

based on the number of partitions in the preceding com-
putation, and the number of partitions in the M+S stage
is chosen based on the volume of data to be sorted (tran-
sitions (2) and (3) in Figure 5).

4.2.4 Execution Plan for MapReduce

This section analyzes the execution plan generated by
DryadLINQ for the MapReduce computation from Sec-
tion 3.3. Here, we examine only the case when the input
to GroupBy is not ordered and the reduce function is
determined to be associative and commutative. The auto-
matically generated execution plan is shown in Figure 6.
The plan is statically transformed (1) into a Map and a
Reduce stage. The Map stage applies the SelectMany
operator (SM) and then sorts each partition (S), performs
a local GroupBy (G) and finally a local reduction (R).
The D nodes perform a hash-partition. All these opera-
tions are pipelined together in a single process. The Re-
duce stage first merge-sorts all the incoming data streams
(MS). This is followed by another GroupBy (G) and the
final reduction (R). All these Reduce stage operators are
pipelined in a single process along with the subsequent
operation in the computation (X). As with the sort plan

in Section 4.2.3, at run time (2) the number of Map in-
stances is automatically determined using the number of
input partitions, and the number of Reduce instances is
chosen based on the total volume of data to be Reduced.
If necessary, DryadLINQ will insert a dynamic aggrega-
tion tree (3) to reduce the amount of data that crosses the
network. In the figure, for example, the two rightmost in-
put partitions were processed on the same computer, and
their outputs have been pre-aggregated locally before be-
ing transferred across the network and combined with the
output of the leftmost partition.

The resulting execution plan is very similar to
the manually constructed plans reported for Google’s
MapReduce [15] and the Dryad histogram computation
in [26]. The crucial point to note is that in DryadLINQ
MapReduce is not a primitive, hard-wired operation, and
all user-specified computations gain the benefits of these
powerful automatic optimization strategies.

4.3 Code Generation
The EPG is used to derive the Dryad execution plan af-
ter the static optimization phase. While the EPG encodes
all the required information, it is not a runnable program.
DryadLINQ uses dynamic code generation to automati-
cally synthesize LINQ code to be run at the Dryad ver-
tices. The generated code is compiled into a .NET as-
sembly that is shipped to cluster computers at execution
time. For each execution-plan stage, the assembly con-
tains two pieces of code:

(1) The code for the LINQ subexpression executed by
each node.

(2) Serialization code for the channel data. This code is
much more efficient than the standard .NET serializa-
tion methods since it can rely on the contract between
the reader and writer of a channel to access the same
statically known datatype.

The subexpression in a vertex is built from pieces of
the overall EPG passed in to DryadLINQ. The EPG is
created in the original client computer’s execution con-
text, and may depend on this context in two ways:

(1) The expression may reference variables in the lo-
cal context. These references are eliminated by par-
tial evaluation of the subexpression at code-generation
time. For primitive values, the references in the expres-
sions are replaced with the actual values. Object values
are serialized to a resource file which is shipped to com-
puters in the cluster at execution time.

(2) The expression may reference .NET libraries. .NET
reflection is used to find the transitive closure of all non-
system libraries referenced by the executable, and these
are shipped to the cluster computers at execution time.

4.4 Leveraging Other LINQ Providers

One of the greatest benefits of using the LINQ frame-
work is that DryadLINQ can leverage other systems that
use the same constructs. DryadLINQ currently gains
most from the use of PLINQ [19], which allows us to run
the code within each vertex in parallel on a multi-core
server. PLINQ, like DryadLINQ, attempts to make the
process of parallelizing a LINQ program as transparent
as possible, though the systems’ implementation strate-
gies are quite different. Space does not permit a detailed
explanation, but PLINQ employs the iterator model [25]
since it is better suited to fine-grain concurrency in a
shared-memory multi-processor system. Because both
PLINQ and DryadLINQ use expressions composed from
the same LINQ constructs, it is straightforward to com-
bine their functionality. DryadLINQ’s vertices execute
LINQ expressions, and in general the addition by the
DryadLINQ code generator of a single line to the vertex’s
program triggers the use of PLINQ, allowing the vertex
to exploit all the cores in a cluster computer. We note
that this remarkable fact stems directly from the careful
design choices that underpin LINQ.

We have also added interoperation with the LINQ-to-
SQL system which lets DryadLINQ vertices directly ac-
cess data stored in SQL databases. Running a database
on each cluster computer and storing tables partitioned
across these databases may be much more efficient than
using flat disk files for some applications. DryadLINQ
programs can use “partitioned” SQL tables as input
and output. DryadLINQ also identifies and ships some
subexpressions to the SQL databases for more efficient
execution.

Finally, the default single-computer LINQ-to-Objects
implementation allows us to run DryadLINQ programs
on a single computer for testing on small inputs under the
control of the Visual Studio debugger before executing
on a full cluster dataset.

4.5 Debugging

Debugging a distributed application is a notoriously dif-
ficult problem. Most DryadLINQ jobs are long running,
processing massive datasets on large clusters, which
could make the debugging process even more challeng-
ing. Perhaps surprisingly, we have not found debug-
ging the correctness of programs to be a major chal-
lenge when using DryadLINQ. Several users have com-
mented that LINQ’s strong typing and narrow interface
have turned up many bugs before a program is even exe-
cuted. Also, as mentioned in Section 4.4, DryadLINQ
supports a straightforward mechanism to run applica-
tions on a single computer, with very sophisticated sup-
port from the .NET development environment.

Once an application is running on the cluster, an in-
dividual vertex may fail due to unusual input data that
manifests problems not apparent from a single-computer
test. A consequence of Dryad’s deterministic-replay ex-
ecution model, however, is that it is straightforward to
re-execute such a vertex in isolation with the inputs that
caused the failure, and the system includes scripts to ship
the vertex executable, along with the problematic parti-
tions, to a local computer for analysis and debugging.

Performance debugging is a much more challenging
problem in DryadLINQ today. Programs report sum-
mary information about their overall progress, but if par-
ticular stages of the computation run more slowly than
expected, or their running time shows surprisingly high
variance, it is necessary to investigate a collection of dis-
parate logs to diagnose the issue manually. The central-
ized nature of the Dryad job manager makes it straight-
forward to collect profiling information to ease this task,
and simplifying the analysis of these logs is an active
area of our current research.

5 Experimental Evaluation

We have evaluated DryadLINQ on a set of applica-
tions drawn from domains including web-graph analy-
sis, large-scale log mining, and machine learning. All of
our performance results are reported for a medium-sized
private cluster described in Section 5.1. Dryad has been
in continuous operation for several years on production
clusters made up of thousands of computers so we are
confident in the scaling properties of the underlying ex-
ecution engine, and we have run large-scale DryadLINQ
programs on those production clusters.

5.1 Hardware Configuration
The experiments described in this paper were run on a
cluster of 240 computers. Each of these computers was
running the Windows Server 2003 64-bit operating sys-
tem. The computers’ principal components were two
dual-core AMD Opteron 2218 HE CPUs with a clock
speed of 2.6 GHz, 16 GBytes of DDR2 random access
memory, and four 750 GByte SATA hard drives. The
computers had two partitions on each disk. The first,
small, partition was occupied by the operating system on
one disk and left empty on the remaining disks. The re-
maining partitions on each drive were striped together to
form a large data volume spanning all four disks. The
computers were each connected to a Linksys SRW2048
48-port full-crossbar GBit Ethernet local switch via GBit
Ethernet. There were between 29 and 31 computers con-
nected to each local switch. Each local switch was in
turn connected to a central Linksys SRW2048 switch,
via 6 ports aggregated using 802.3ad link aggregation.

This gave each local switch up to 6 GBits per second of
full duplex connectivity. Note that the switches are com-
modity parts purchased for under $1000 each.

5.2 Terasort

In this experiment we evaluate DryadLINQ using the
Terasort benchmark [3]. The task is to sort 10 billion
100-Byte records using case-insensitive string compar-
ison on a 10-Byte key. We use the data generator de-
scribed in [3]. The DryadLINQ program simply defines
the record type, creates a DryadTable for the partitioned
inputs, and calls OrderBy; the system then automati-
cally generates an execution plan using dynamic range-
partitioning as described in Section 4.2.3 (though for the
purposes of running a controlled experiment we manu-
ally set the number of partitions for the sorting stage).

For this experiment, each computer in the clus-
ter stored a partition of size around 3.87 GBytes
(4, 166, 666, 600 Bytes). We varied the number of com-
puters used, so for an execution using n computers, the
total data sorted is 3.87n GBytes. On the largest run
n = 240 and we sort 1012 Bytes of data. The most time-
consuming phase of this experiment is the network read
to range-partition the data. However, this is overlapped
with the sort, which processes inputs in batches in paral-
lel and generates the output by merge-sorting the sorted
batches. DryadLINQ automatically compresses the data
before it is transferred across the network—when sorting
1012 Bytes of data, 150 GBytes of compressed data were
transferred across the network.

Table 1 shows the elapsed times in seconds as the num-
ber of machines increases from 1 to 240, and thus the
data sorted increases from 3.87 GBytes to 1012 Bytes.
On repeated runs the times were consistent to within 5%
of their averages. Figure 7 shows the same information
in graphical form. For the case of a single partition,
DryadLINQ uses a very different execution plan, skip-
ping the sampling and partitioning stages. It thus reads
the input data only once, and does not perform any net-
work transfers. The single-partition time is therefore the
baseline time for reading a partition, sorting it, and writ-
ing the output. For 2 ≤ n ≤ 20 all computers were
connected to the same local switch, and the elapsed time
stays fairly constant. When n > 20 the elapsed time
seems to be approaching an asymptote as we increase the
number of computers. We interpret this to mean that the
cluster is well-provisioned: we do not saturate the core

Computers 1 2 10 20 40 80 240
Time 119 241 242 245 271 294 319

Table 1: Time in seconds to sort different amounts of data. The total
data sorted by an n-machine experiment is around 3.87n GBytes, or
1012 Bytes when n = 240.

0

50

100

150

200

250

300

350

0 50 100 150 200 250

Ex
e

cu
ti

o
n

 t
im

e
(i

n
 s

e
co

n
d

s)

Number of computers

Figure 7: Sorting increasing amounts of data while keeping the volume
of data per computer fixed. The total data sorted by an n-machine
experiment is around 3.87n GBytes, or 1012 Bytes when n = 240.

Computers 1 5 10 20 40
Dryad 2167 451 242 135 92

DryadLINQ 2666 580 328 176 113

Table 2: Time in seconds to process skyserver Q18 using different num-
ber of computers.

network even when performing a dataset repartitioning
across all computers in the cluster.

5.3 SkyServer

For this experiment we implemented the most time-
consuming query (Q18) from the Sloan Digital Sky Sur-
vey database [23]. The query identifies a “gravitational
lens” effect by comparing the locations and colors of
stars in a large astronomical table, using a three-way
Join over two input tables containing 11.8 GBytes and
41.8 GBytes of data, respectively. In this experiment,
we compare the performance of the two-pass variant
of the Dryad program described in [26] with that of
DryadLINQ. The Dryad program is around 1000 lines of
C++ code whereas the corresponding DryadLINQ pro-
gram is only around 100 lines of C#. The input tables
were manually range-partitioned into 40 partitions using
the same keys. We varied n, the number of comput-
ers used, to investigate the scaling performance. For a
given n we ensured that the tables were distributed such
that each computer had approximately 40/n partitions of
each, and that for a given partition key-range the data
from the two tables was stored on the same computer.

Table 2 shows the elapsed times in seconds for the na-
tive Dryad and DryadLINQ programs as we varied n be-
tween 1 and 40. On repeated runs the times were consis-
tent to within 3.5% of their averages. The DryadLINQ
implementation is around 1.3 times slower than the na-
tive Dryad job. We believe the slowdown is mainly due

0.00

5.00

10.00

15.00

20.00

25.00

0 5 10 15 20 25 30 35 40 45

Dryad Two-pass

DryadLINQ

Number of computers

Sp
ee

d
-u

p

Figure 8: The speed-up of the Skyserver Q18 computation as the num-
ber of computers is varied. The baseline is relative to DryadLINQ job
running on a single computer and times are given in Table 2.

to a hand-tuned sort strategy used by the Dryad program,
which is somewhat faster than DryadLINQ’s automatic
parallel sort implementation. However, the DryadLINQ
program is written at a much higher level. It abstracts
much of the distributed nature of the computation from
the programmer, and is only 10% of the length of the
native code.

Figure 8 graphs the inverse of the running times, nor-
malized to show the speed-up factor relative to the two-
pass single-computer Dryad version. For n ≤ 20 all
computers were connected to the same local switch, and
the speedup factor is approximately proportional to the
number of computers used. When n = 40 the comput-
ers must communicate through the core switch and the
scaling becomes sublinear.

5.4 PageRank
We also evaluate the performance of DryadLINQ at per-
forming PageRank calculations on a large web graph.
PageRank is a conceptually simple iterative computation
for scoring hyperlinked pages. Each page starts with
a real-valued score. At each iteration every page dis-
tributes its score across its outgoing links and updates its
score to the sum of values received from pages linking
to it. Each iteration of PageRank is a fairly simple rela-
tional query. We first Join the set of links with the set of
ranks, using the source as the key. This results in a set of
scores, one for each link, that we can accumulate using
a GroupBy-Sum with the link’s destinations as keys. We
compare two implementations: an initial “naive” attempt
and an optimized version.

Our first DryadLINQ implementation follows the out-
line above, except that the links are already grouped by
source (this is how the crawler retrieves them). This
makes the Join less complicated—once per page rather
than once per link—but requires that we follow it with

a SelectMany, to produce the list of scores to aggregate.
This naive implementation takes 93 lines of code, includ-
ing 35 lines to define the input types.

The naive approach scales well, but is inefficient be-
cause it must reshuffle data proportional to the number
of links to aggregate the transmitted scores. We improve
on it by first HashPartitioning the link data by a hash of
the hostname of the source, rather than a hash of the page
name. The result is that most of the rank updates are
written back locally—80%-90% of web links are host-
local—and do not touch the network. It is also possible
to cull leaf pages from the graph (and links to them);
they do not contribute to the iterative computation, and
needn’t be kept in the inner loop. Further performance
optimizations, like pre-grouping the web pages by host
(+7 LOC), rewriting each of these host groups with dense
local names (+21 LOC), and pre-aggregating the ranks
from each host (+18 LOC) simplify the computation fur-
ther and ease the memory footprint. The complete source
code for our implementation of PageRank is contained in
the companion technical report [38].

We evaluate both of these implementations (running
on 240 computers) on a large web graph containing
954M pages and 16.5B links, occupying 1.2 TB com-
pressed on disk. The naive implementation, including
pre-aggregation, executes 10 iterations in 12,792 sec-
onds. The optimized version, which further compresses
the graph down to 116 GBytes, executes 10 iterations in
690 seconds.

It is natural to compare our PageRank implementa-
tion with similar implementations using other platforms.
MapReduce, Hadoop, and Pig all use the MapReduce
computational framework, which has trouble efficiently
implementing Join due to its requirement that all input
(including the web graph itself) be output of the previous
stage. By comparison, DryadLINQ can partition the web
graph once, and reuse that graph in multiple stages with-
out moving any data across the network. It is important
to note that the Pig language masks the complexity of
Joins, but they are still executed as MapReduce compu-
tations, thus incurring the cost of additional data move-
ment. SQL-style queries can permit Joins, but suffer
from their rigid data types, preventing the pre-grouping
of links by host and even by page.

5.5 Large-Scale Machine Learning

We ran two machine-learning experiments to investigate
DryadLINQ’s performance on iterative numerical algo-
rithms.

The first experiment is a clustering algorithm for de-
tecting botnets. We analyze around 2.1 GBytes of data,
where each datum is a three-dimensional vector summa-
rizing salient features of a single computer, and group

them into 3 clusters. The algorithm was written using the
machine-learning framework described in Section 3.3 in
160 lines of C#. The computation has three stages: (1)
parsing and re-partitioning the data across all the com-
puters in the cluster; (2) counting the records; and (3)
performing an iterative E–M computation. We always
perform 10 iterations (ignoring the convergence crite-
rion) grouped into two blocks of 5 iterations, materializ-
ing the results every 5 iterations. Some stages are CPU-
bound (performing matrix algebra), while other are I/O
bound. The job spawns about 10,000 processes across
the 240 computers, and completes end-to-end in 7 min-
utes and 11 seconds, using about 5 hours of effective
CPU time.

We also used DryadLINQ to apply statistical inference
algorithms [33] to automatically discover network-wide
relationships between hosts and services on a medium-
size network (514 hosts). For each network host the
algorithms compose a dependency graph by analyzing
timings between input/output packets. The input is pro-
cessed header data from a trace of 11 billion packets
(180 GBytes packed using a custom compression format
into 40 GBytes). The main body of this DryadLINQ
program is just seven lines of code. It hash-partitions
the data using the pair (host,hour) as a key, applies
a doubly-nested E–M algorithm and hypothesis testing
(which takes 95% of the running time), partitions again
by hour, and finally builds graphs for all 174,588 active
host hours. The computation takes 4 hours and 22 min-
utes, and more than 10 days of effective CPU time.

6 Related Work

DryadLINQ builds on decades of previous work in dis-
tributed computation. The most obvious connections are
with parallel databases, grid and cluster computing, par-
allel and high-performance computation, and declarative
programming languages.

Many of the salient features of DryadLINQ stem from
the high-level system architecture. In our model of clus-
ter computing the three layers of storage, execution,
and application are decoupled. The system can make
use of a variety of storage layers, from raw disk files
to distributed filesystems and even structured databases.
The Dryad distributed execution environment provides
generic distributed execution services for acyclic net-
works of processes. DryadLINQ supplies the application
layer.

6.1 Parallel Databases
Many of the core ideas employed by DryadLINQ (such
as shared-nothing architecture, horizontal data partition-
ing, dynamic repartitioning, parallel query evaluation,

and dataflow scheduling), can be traced to early research
projects in parallel databases [18], such as Gamma [17],
Bubba [8], and Volcano [22], and found in commercial
products for data warehousing such as Teradata, IBM
DB2 Parallel Edition [4], and Tandem SQL/MP [20].

Although DryadLINQ builds on many of these ideas,
it is not a traditional database. For example, DryadLINQ
provides a generalization of the concept of query lan-
guage, but it does not provide a data definition lan-
guage (DDL) or a data management language (DML)
and it does not provide support for in-place table up-
dates or transaction processing. We argue that the DDL
and DML belong to the storage layer, so they should not
be a first-class part of the application layer. However,
as Section 4.2 explains, the DryadLINQ optimizer does
make use of partitioning and typing information avail-
able as metadata attached to input datasets, and will write
such metadata back to an appropriately configured stor-
age layer.

Traditional databases offer extensibility beyond the
simple relational data model through embedded lan-
guages and stored procedures. DryadLINQ (following
LINQ’s design) turns this relationship around, and em-
beds the expression language in the high-level program-
ming language. This allows DryadLINQ to provide very
rich native datatype support: almost all native .NET
types can be manipulated as typed, first-class objects.

In order to enable parallel expression execution,
DryadLINQ employs many traditional parallelization
and query optimization techniques, centered on horizon-
tal data partitioning. As mentioned in the Introduction,
the expression plan generated by DryadLINQ is virtu-
alized. This virtualization underlies DryadLINQ’s dy-
namic optimization techniques, which have not previ-
ously been reported in the literature [16].

6.2 Large Scale Data-Parallel Computa-
tion Infrastructure

The last decade has seen a flurry of activity in archi-
tectures for processing very large datasets (as opposed
to traditional high-performance computing which is typ-
ically CPU-bound). One of the earliest commercial
generic platforms for distributed computation was the
Teoma Neptune platform [13], which introduced a map-
reduce computation paradigm inspired by MPI’s Re-
duce operator. The Google MapReduce framework [15]
slightly extended the computation model, separated the
execution layer from storage, and virtualized the exe-
cution. The Hadoop open-source port of MapReduce
uses the same architecture. NetSolve [5] proposed a
grid-based architecture for a generic execution layer.
DryadLINQ has a richer set of operators and better lan-
guage support than any of these other proposals.

At the storage layer a variety of very large scale
simple databases have appeared, including Google’s
BigTable [11], Amazon’s Simple DB, and Microsoft
SQL Server Data Services. Architecturally, DryadLINQ
is just an application running on top of Dryad and gener-
ating distributed Dryad jobs. We can envision making it
interoperate with any of these storage layers.

6.3 Declarative Programming Languages

Notable research projects in parallel declarative lan-
guages include Parallel Haskell [37], Cilk [7], and
NESL [6].

There has also been a recent surge of activity on layer-
ing distributed and declarative programming language on
top of distributed computation platforms. For example,
Sawzall [32] is compiled to MapReduce applications,
while Pig [31] programs are compiled to the Hadoop in-
frastructure. The MapReduce model is extended to sup-
port Joins in [12]. Other examples include Pipelets [9],
HIVE (an internal Facebook language built on Hadoop),
and Scope [10], Nebula [26], and PSQL (internal Mi-
crosoft languages built on Dryad).

Grid computing usually provides workflows (and not
a programming language interface), which can be tied
together by a user-level application. Examples include
Swift [39] and its scripting language, Taverna [30], and
Triana [36]. DryadLINQ is a higher-level language,
which better conceals the underlying execution fabric.

7 Discussion and Conclusions

DryadLINQ has been in use by a small community of de-
velopers for over a year, resulting in tens of large appli-
cations and many more small programs. The system was
recently released more widely within Microsoft and our
experience with it is rapidly growing as a result. Feed-
back from users has generally been very positive. It is
perhaps of particular interest that most of our users man-
age small private clusters of, at most, tens of computers,
and still find substantial benefits from DryadLINQ.

Of course DryadLINQ is not appropriate for all dis-
tributed applications, and this lack of generality arises
from design choices in both Dryad and LINQ.

The Dryad execution engine was engineered for batch
applications on large datasets. There is an overhead of
at least a few seconds when executing a DryadLINQ
EPG which means that DryadLINQ would not cur-
rently be well suited to, for example, low-latency dis-
tributed database lookups. While one could imagine re-
engineering Dryad to mitigate some of this latency, an
effective solution would probably need to adopt differ-
ent strategies for, at least, resource virtualization, fault-

tolerance, and code generation and so would look quite
different to our current system.

The question of which applications are suitable for
parallelization by DryadLINQ is more subtle. In our ex-
perience, the main requirement is that the program can
be written using LINQ constructs: users generally then
find it straightforward to adapt it to distributed execution
using DryadLINQ—and in fact frequently no adaptation
is necessary. However, a certain change in outlook may
be required to identify the data-parallel components of an
algorithm and express them using LINQ operators. For
example, the PageRank computation described in Sec-
tion 5 uses a Join operation to implement a subroutine
typically specified as matrix multiplication.

Dryad and DryadLINQ are also inherently special-
ized for streaming computations, and thus may ap-
pear very inefficient for algorithms which are natu-
rally expressed using random-accesses. In fact for sev-
eral workloads including breadth-first traversal of large
graphs we have found DryadLINQ outperforms special-
ized random-access infrastructures. This is because the
current performance characteristics of hard disk drives
ensures that sequential streaming is faster than small
random-access reads even when greater than 99% of the
streamed data is discarded. Of course there will be other
workloads where DryadLINQ is much less efficient, and
as more storage moves from spinning disks to solid-state
(e.g. flash memory) the advantages of streaming-only
systems such as Dryad and MapReduce will diminish.

We have learned a lot from our users’ experience of
the Apply operator. Many DryadLINQ beginners find
it easier to write custom code inside Apply than to de-
termine the equivalent native LINQ expression. Apply
is therefore helpful since it lowers the barrier to entry
to use the system. However, the use of Apply “pol-
lutes” the relational nature of LINQ and can reduce the
system’s ability to make high-level program transforma-
tions. This tradeoff between purity and ease of use is
familiar in language design. As system builders we have
found one of the most useful properties of Apply is that
sophisticated programmers can use it to manually imple-
ment optimizations that DryadLINQ does not perform
automatically. For example, the optimizer currently im-
plements all reductions using partial sorts and groupings
as shown in Figure 6. In some cases operations such as
Count are much more efficiently implemented using hash
tables and accumulators, and several developers have in-
dependently used Apply to achieve this performance im-
provement. Consequently we plan to add additional re-
duction patterns to the set of automatic DryadLINQ op-
timizations. This experience strengthens our belief that,
at the current stage in the evolution of the system, it is
best to give users flexibility and suffer the consequences
when they use that flexibility unwisely.

DryadLINQ has benefited tremendously from the de-
sign choices of LINQ and Dryad. LINQ’s extensibil-
ity, allowing the introduction of new execution imple-
mentations and custom operators, is the key that allows
us to achieve deep integration of Dryad with LINQ-
enabled programming languages. LINQ’s strong static
typing is extremely valuable when programming large-
scale computations—it is much easier to debug compi-
lation errors in Visual Studio than run-time errors in the
cluster. Likewise, Dryad’s flexible execution model is
well suited to the static and dynamic optimizations we
want to implement. We have not had to modify any part
of Dryad to support DryadLINQ’s development. In con-
trast, many of our optimizations would have been diffi-
cult to express using a more limited computational ab-
straction such as MapReduce.

Our current research focus is on gaining more under-
standing of what programs are easy or hard to write with
DryadLINQ, and refining the optimizer to ensure it deals
well with common cases. As discussed in Section 4.5,
performance debugging is currently not well supported.
We are working to improve the profiling and analysis
tools that we supply to programmers, but we are ulti-
mately more interested in improving the system’s ability
to get good performance automatically. We are also pur-
suing a variety of cluster-computing projects that are en-
abled by DryadLINQ, including storage research tailored
to the workloads generated by DryadLINQ applications.

Our overall experience is that DryadLINQ, by com-
bining the benefits of LINQ—a high-level language and
rich data structures—with the power of Dryad’s dis-
tributed execution model, proves to be an amazingly sim-
ple, useful and elegant programming environment.

Acknowledgements
We would like to thank our user community for their in-
valuable feedback, and particularly Frank McSherry for
the implementation and evaluation of PageRank. We also
thank Butler Lampson, Dave DeWitt, Chandu Thekkath,
Andrew Birrell, Mike Schroeder, Moises Goldszmidt,
and Kannan Achan, as well as the OSDI review commit-
tee and our shepherd Marvin Theimer, for many helpful
comments and contributions to this paper.

References
[1] The DryadLINQ project.

http://research.microsoft.com/research/sv/DryadLINQ/.

[2] The LINQ project.
http://msdn.microsoft.com/netframework/future/linq/.

[3] Sort benchmark.
http://research.microsoft.com/barc/SortBenchmark/.

[4] BARU, C. K., FECTEAU, G., GOYAL, A., HSIAO, H., JHIN-
GRAN, A., PADMANABHAN, S., COPELAND, G. P., AND WIL-

SON, W. G. DB2 parallel edition. IBM Systems Journal 34, 2,
1995.

[5] BECK, M., DONGARRA, J., AND PLANK, J. S. NetSolve/D:
A massively parallel grid execution system for scalable data in-
tensive collaboration. In International Parallel and Distributed
Processing Symposium (IPDPS), 2005.

[6] BLELLOCH, G. E. Programming parallel algorithms. Communi-
cations of the ACM (CACM) 39, 3, 1996.

[7] BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B., LEISERSON,
C. E., RANDALL, K. H., AND ZHOU, Y. Cilk: An efficient
multithreaded runtime system. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), 1995.

[8] BORAL, H., ALEXANDER, W., CLAY, L., COPELAND, G.,
DANFORTH, S., FRANKLIN, M., HART, B., SMITH, M., AND
VALDURIEZ, P. Prototyping Bubba, a highly parallel database
system. IEEE Trans. on Knowl. and Data Eng. 2, 1, 1990.

[9] CARNAHAN, J., AND DECOSTE, D. Pipelets: A framework for
distributed computation. In W4: Learning in Web Search, 2005.

[10] CHAIKEN, R., JENKINS, B., LARSON, P.-Å., RAMSEY, B.,
SHAKIB, D., WEAVER, S., AND ZHOU, J. SCOPE: Easy and
efficient parallel processing of massive data sets. In International
Conference of Very Large Data Bases (VLDB), 2008.

[11] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. BigTable: A distributed storage system for struc-
tured data. In Symposium on Operating System Design and Im-
plementation (OSDI), 2006.

[12] CHIH YANG, H., DASDAN, A., HSIAO, R.-L., AND PARKER,
D. S. Map-reduce-merge: simplified relational data processing
on large clusters. In SIGMOD international conference on Man-
agement of data, 2007.

[13] CHU, L., TANG, H., YANG, T., AND SHEN, K. Optimizing data
aggregation for cluster-based internet services. In Symposium on
Principles and practice of parallel programming (PPoPP), 2003.

[14] CRUANES, T., DAGEVILLE, B., AND GHOSH, B. Parallel SQL
execution in Oracle 10g. In ACM SIGMOD, 2004.

[15] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data
processing on large clusters. In Proceedings of the 6th Symposium
on Operating Systems Design and Implementation (OSDI), 2004.

[16] DESHPANDE, A., IVES, Z., AND RAMAN, V. Adaptive query
processing. Foundations and Trends in Databases 1, 1, 2007.

[17] DEWITT, D., GHANDEHARIZADEH, S., SCHNEIDER, D.,
HSIAO, H., BRICKER, A., AND RASMUSSEN, R. The Gamma
database machine project. IEEE Transactions on Knowledge and
Data Engineering 2, 1, 1990.

[18] DEWITT, D., AND GRAY, J. Parallel database systems: The fu-
ture of high performance database processing. Communications
of the ACM 36, 6, 1992.

[19] DUFFY, J. A query language for data parallel programming. In
Proceedings of the 2007 workshop on Declarative aspects of mul-
ticore programming, 2007.

[20] ENGLERT, S., GLASSTONE, R., AND HASAN, W. Parallelism
and its price : A case study of nonstop SQL/MP. In Sigmod
Record, 1995.

[21] FENG, L., LU, H., TAY, Y. C., AND TUNG, A. K. H. Buffer
management in distributed database systems: A data mining
based approach. In International Conference on Extending
Database Technology, 1998, H.-J. Schek, F. Saltor, I. Ramos, and
G. Alonso, Eds., vol. 1377 of Lecture Notes in Computer Science.

[22] GRAEFE, G. Encapsulation of parallelism in the Volcano query
processing system. In SIGMOD International Conference on
Management of data, 1990.

[23] GRAY, J., SZALAY, A., THAKAR, A., KUNSZT, P.,
STOUGHTON, C., SLUTZ, D., AND VANDENBERG, J. Data
mining the SDSS SkyServer database. In Distributed Data and
Structures 4: Records of the 4th International Meeting, 2002.

[24] HASAN, W., FLORESCU, D., AND VALDURIEZ, P. Open issues
in parallel query optimization. SIGMOD Rec. 25, 3, 1996.

[25] HELLERSTEIN, J. M., STONEBRAKER, M., AND HAMILTON,
J. Architecture of a database system. Foundations and Trends in
Databases 1, 2, 2007.

[26] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FET-
TERLY, D. Dryad: Distributed data-parallel programs from se-
quential building blocks. In Proceedings of European Conference
on Computer Systems (EuroSys), 2007.

[27] KABRA, N., AND DEWITT, D. J. Efficient mid-query re-
optimization of sub-optimal query execution plans. In SIGMOD
International Conference on Management of Data, 1998.

[28] KOSSMANN, D. The state of the art in distributed query process-
ing. ACM Comput. Surv. 32, 4, 2000.

[29] MORVAN, F., AND HAMEURLAIN, A. Dynamic memory allo-
cation strategies for parallel query execution. In Symposium on
Applied computing (SAC), 2002.

[30] OINN, T., GREENWOOD, M., ADDIS, M., FERRIS, J.,
GLOVER, K., GOBLE, C., HULL, D., MARVIN, D., LI, P.,
LORD, P., POCOCK, M. R., SENGER, M., WIPAT, A., AND
WROE, C. Taverna: Lessons in creating a workflow environment
for the life sciences. Concurrency and Computation: Practice
and Experience 18, 10, 2005.

[31] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R., AND
TOMKINS, A. Pig Latin: A not-so-foreign language for data
processing. In International Conference on Management of Data
(Industrial Track) (SIGMOD), 2008.

[32] PIKE, R., DORWARD, S., GRIESEMER, R., AND QUINLAN, S.
Interpreting the data: Parallel analysis with Sawzall. Scientific
Programming 13, 4, 2005.

[33] SIMMA, A., GOLDSZMIDT, M., MACCORMICK, J., BARHAM,
P., BLACK, R., ISAACS, R., AND MORTIER, R. CT-NOR: rep-
resenting and reasoning about events in continuous time. In In-
ternational Conference on Uncertainty in Artificial Intelligence,
2008.

[34] STONEBRAKER, M., BEAR, C., ÇETINTEMEL, U., CHERNI-
ACK, M., GE, T., HACHEM, N., HARIZOPOULOS, S., LIFTER,
J., ROGERS, J., AND ZDONIK, S. One size fits all? Part 2:
Benchmarking results. In Conference on Innovative Data Sys-
tems Research (CIDR), 2005.

[35] STONEBRAKER, M., MADDEN, S., ABADI, D. J., HARI-
ZOPOULOS, S., HACHEM, N., AND HELLAND, P. The end of
an architectural era (it’s time for a complete rewrite). In Interna-
tional Conference of Very Large Data Bases (VLDB), 2007.

[36] TAYLOR, I., SHIELDS, M., WANG, I., AND HARRISON, A.
Workflows for e-Science. 2007, ch. The Triana Workflow En-
vironment: Architecture and Applications, pp. 320–339.

[37] TRINDER, P., LOIDL, H.-W., AND POINTON, R. Parallel and
distributed Haskells. Journal of Functional Programming 12,
(4&5), 2002.

[38] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ERLINGSSON,
Ú., GUNDA, P. K., CURREY, J., MCSHERRY, F., AND ACHAN,
K. Some sample programs written in DryadLINQ. Tech. Rep.
MSR-TR-2008-74, Microsoft Research, 2008.

[39] ZHAO, Y., HATEGAN, M., CLIFFORD, B., FOSTER, I., VON
LASZEWSKI, G., NEFEDOVA, V., RAICU, I., STEF-PRAUN, T.,
AND WILDE, M. Swift: Fast, reliable, loosely coupled parallel
computation. IEEE Congress on Services, 2007.

